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Abstract: Nonlinear Schrödinger equation with simple quadratic potential 
modulated by a spatially-varying diffraction coefficient is investigated 
theoretically. Second-order rogue wave breather solutions of the model are 
constructed by using the similarity transformation. A modal quantum 
number is introduced, useful for classifying and controlling the solutions. 
From the solutions obtained, the behavior of second order Kuznetsov-Ma 
breathers (KMBs), Akhmediev breathers (ABs), and Peregrine solitons is 
analyzed in particular, by selecting different modulation frequencies and 
quantum modal parameter. We show how to generate interesting second 
order breathers and related hybrid rogue waves. The emergence of true 
rogue waves – single giant waves that are generated in the interaction of 
KMBs, ABs, and Peregrine solitons – is explicitly displayed in our 
analytical solutions. 
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1. Introduction 

Nonlinear Schrödinger (NLS) equation is a general model used to describe evolution of 
slowly-varying wave packets in various nonlinear systems [1,2]. It arises in many areas of 
nonlinear science, including optical beam propagation in nonlinear media [3,4], surface waves 
in deep ocean [5,6], and Bose-Einstein condensates (BECs) [7]. Among different nonlinear 
solutions there exists an interesting class of periodic solutions, the so-called breathers, which 
are periodic along the propagation and localized in the transverse direction. The importance of 
breathers that ride on a finite background has recently been recognized in the modeling of 
rogue waves [8,9]. Up to now these breathers have been categorized into two main types: 
longitudinal breathers and transverse breathers. The longitudinal breathers (generally referred 
to as Kuznetsov-Ma breathers (KMBs) [10, 11] oscillate longitudinally and are similar to the 
usual transversely localized breathing solutions of the NLS equation. The transverse breathers 
oscillate transversely and are localized in the propagation direction; one example is the 
Akhmediev breather (AB) [12]. When the periods of ABs and KMBs become infinite, they 
reduce to a fractional form that is called the rational solution – the Peregrine soliton [13]. 

The rogue wave is a special example of soliton solution with a non-zero background. At 
present, research on rogue waves has been extended to different systems [14–18] and 
significant progress has been achieved in both theoretical and experimental investigations in 
the past decade [19–21]. It is now accepted that KMBs and ABs are not rogue waves in the 
strict meaning of the word, but can be used in the modeling of ones. A true rogue wave – a 
giant solitary wave that is at least four times higher than the surrounding waves – can arise in 
the interactions of KMBs, ABs, and Peregrine solitons. This phenomenon is explicitly 
displayed in our analytical solutions. In addition, controllable rogue waves have also been 
extensively studied. For example, the management of rogue waves in inhomogeneous 
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nonlinear media was reported in [22–25]. In these papers only the dispersion (diffraction) and 
nonlinearity management were explored, which are usually considered as functions of the 
propagation distance [26–29]. However, this is not true in general anisotropic inhomogeneous 
nonlinear media. Actually, we have demonstrated that a more complete treatment should take 
into account the transverse inhomogeneity of optical media, which is commonly connected 
with the perturbation in the external potential [30]. This necessitates the inclusion of space-
dependent coefficients in the appropriate evolution equation and the treatment by the 
similarity transformation method. It is worthwhile mentioning that the process of rogue wave 
generation needs to be controlled effectively, thus it is vital to understand theoretically how to 
realize such a control. Inspired by our previous work [30], we propose the ideas of transverse 
modulation and quantum modal parameter control, which are powerful tools for classifying 
and manipulating rogue waves. 

In this paper, we theoretically investigate the behavior of rogue waves, based on the 
second-order breather solutions of the NLS equation with spatially-modulated coefficients 
and a special external potential. This research is realized by utilizing the NLS equation with a 
simple quadratic potential, modulated by the spatially-varying diffraction coefficient. The 
explicit solutions obtained are important for enabling a more easy understanding of rogue 
waves. The general solution contains two modulation frequencies (the complex eigenvalues) 
and the quantum modal parameter as variable parameters of the second-order breather, thus 
allowing one to choose a variety of particular cases with various patterns of such breathers. In 
Ref [31], Kedziora et al. used Taylor expansion method to study degenerate solutions. The 
difficulty of this method is the cumbersome calculation, involving mixed expansions in 
polynomials with trigonometric and hyperbolic functions. According to our method, one can 
obtain novel results more easily when the modulation frequencies are directly used. 

The paper is organized as follows. In the next section we introduce the dimensionless 
nonlinear model with spatially modulated coefficients and a special external potential in the 
transversely-anisotropic inhomogeneous nonlinear media, and find the second-order breather 
solution for this model. In Sec. 3, we discuss different solutions by choosing two modulation 
frequencies and the quantum modal parameter appropriately; we present KMBs, ABs, and 
Peregrine solitons, and hybrid rogue wave solutions composed of those waves. Furthermore, 
the controllable behavior of these solutions is also investigated. In the last section, a 
conclusion is given. 

2. Model and the second-order rogue wave solutions 

We firstly recall results obtained in Refs [30, 31]. The NLS equation with spatially modulated 
coefficients and a special external potential can be written in the dimensionless form as [30]: 

 ( ) ( ) ( )
2

2 2
2

1 1 1 1
0,

2 2 4 2

u u
i x x u u x x m u

z x
β χ β∂ ∂  + + + − + + = ∂ ∂  

 (1) 

where ( ),u z x  represents the complex wave envelope, z and x are the dimensionless 

propagation distance and the transverse coordinate, ( )xβ  represents the diffraction 

coefficient, and ( )xχ  the nonlinearity coefficient. The non-negative integer m is called the 

quantum modal parameter [30]. Here, the external potential is just a simple quadratic 
potential, modulated by the diffraction coefficient. In this way, we stay close to a common 
mathematical model of high physical relevance. For example, when β  is constant, one 
obtains the Gross-Pitaevskii equation with harmonic potential, which is of high importance in 
BECs [27, 30]. We proceed to search for the second-order breather solution of Eq. (1) and 
analyze how this solution is affected by the variation in the quantum modal parameter m. 
Equation (1) admits the following explicit solutions [30]: 
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where ( )mD x  are the parabolic-cylinder functions. Following the similarity transformation 

method, the similarity variable Y(x), the diffraction coefficient ( )xβ , and the nonlinearity 

coefficient ( )xχ  can be written as: ( ) ( )22 ! mY x m dx D xπ=  , ( ) ( ) ( )24 2 !mx D x mβ π= , 

and ( ) ( )22 ! mx m D xχ π= . The complex field ( ),V z Y  in Eq. (2), satisfies the standard NLS 

equation: 
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Equation (3) has been studied previously by many; of interest here are the solutions obtained 
by the Darboux transformation. Among other, Eq. (3) possesses the following second-order 
breather solution [31–33] 
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where 2G , 2H , and 2D  are given by 
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The modulation frequencies 22 1j jk λ= +  ( 1, 2j = ) are determined by the (complex) 

eigenvalues jλ  that are independent of each other. In the above expressions, sj jz z z= −  and 

sj jY Y Y= −  are the shifted variables from the point ( ,j jz Y ), and the instability growth rate of 

each component is 24 2j j jk kδ = − . 

The modulation frequencies represent convenient parameters for classification of 
solutions, in addition to the quantum modal parameter m. For real modulation frequencies kj, 
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as described in [31], solution (3) is capable of describing a variety of possible second-order 
breather profiles. Note that it must be 1 2k k≠ , otherwise the solution (4) does not make sense, 
because then V(z,Y) is trivial. The solution contains ABs, KMBs, the Peregrine soliton and 
their hybrids as particular solutions for different modulation frequencies and the modal 
parameter. For example, when two modulation frequencies are real, combinations of ABs and 
the Peregrine soliton are obtained – the breathers are extended along the x-direction; if the 
frequencies are a purely imaginary, the second-order breathers of different form develop 
along the z-direction. On the other hand, when one frequency is complex and the other one is 
purely imaginary, one obtains the nonlinear superposition of ABs and KMBs. Importantly, the 
emergence of true rogue waves, towering above the surrounding waves, is explicitly displayed 
in our analytical solutions. Thus, one is not compelled here to perform a statistical analysis of 
the resulting interfering breathers, to determine what percentage of those can be classified as 
true rogue waves. They are described analytically and appear at exactly prescribed positions. 

3. Controllable behavior of second-order rogue waves 

In this section, we discuss spatial distributions of solutions (2), developed in Section 2. We 
demonstrate that each case considered has its own distinct characteristics. The profiles of 
ABs, KMBs, and the Peregrine soliton appear similar even though the modulation frequencies 
take different values (e.g., purely real or purely imaginary); the difference lies in the direction 
along which the intensities are distributed. It should also be mentioned that analytical 
solutions (2) and (4) explicitly depend on the similarity variable Y(x) and the parabolic-
cylinder function Dm(x). 

Our interest is in exploring effects of the two modulation frequencies kj in Eq. (2). 
According to Eq. (4), there exist four interesting families of the second-order breathers: the 
nonlinear superposition of two ABs, or an AB and a Peregrine soliton along the x-direction; 
the superposition of two KMBs, or of KMB and a Peregrine soliton along the z-direction; the 
superposition of Peregrine solitons; and the crossings of KMBs and ABs. Some of those cases 
will be displayed below. All these cases naturally depend on the values of two spatial 
frequencies kj. Here, we will construct different types of the second-order rogue wave profiles 
depending also on the quantum modal parameter m. The influence of m is to increase the 
spread and number of modes. The breather solutions of the standard NLS equation for purely 
real modulation frequencies k1 and k2 have been analyzed in Ref [31]. In the following, we 
discuss the cases where kj are purely imaginary or where they are complex. 

In Fig. 1, we plot some examples of KMBs with the single fundamental second-order 
rogue wave in the middle, along the z-axis, and several KMBs with Peregrine solitons for two 
purely imaginary modulation frequencies, generated by solution (2) for different m. For small 
m, a typical example of such a KMB is shown in Fig. 1(a), which displays a periodic 
oscillation of the second-order rogue wave along the z-direction. Several single fundamental 
second-order rogue waves with “four-claw” symmetrical structures about the central peak 
[30] can be observed along the x = 0 line. Generally, there exist m + 1 KMBs, the intensity of 
which is zero at the center for odd m, while for even m the maximum intensity is located at 
the center. 

In addition, we present another special case in Fig. 1(b); the setup is as in Fig. 1(a) except 
for the beam shifts x1 = 1 and x2 = − 1. Several KMBs mixed with Peregrine solitons are 
displayed in Fig. 1(b). When m = 0, a KMB and a Peregrine soliton are observed, as shown in 
the left panel of Fig. 1(b). When m is increased to 1, two pairs of rogue waves are shown in 
the middle panel of Fig. 1(b). The intensity of the left pair is weaker than that of the right pair. 
For m = 2, there exist three pairs of beams in a more complex arrangement, see the right panel 
in Fig. 1(b). 

According to our previous work [30], a second-order rogue wave can be built from three 
first-order rogue waves (three Peregrine solitons). Therefore, as long as suitable purely 
imaginary 1k  and 2k  are chosen (e.g. by decreasing 1 2| |k k− ), a new second-order breather 
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Fig. 1. Profiles of the second-order breathers, viewed as a nonlinear superposition of KMBs 
and Peregrine solitons. Here k1 = 1.7i and k2 = 0.3i for m = 0,1,2 from left to right. (a) Without 
transverse shifts. (b) With beam shifts x1 = 1 and x2 = − 1. 

family can be observed. Figure 2 exhibits some special profiles with k1 = 1.2i and k2 = 0.8i. 
For m = 0, the distribution of a special second-order breather is depicted in the left panel of 
Fig. 2(a), in which there exist six Peregrine solitons that are equally distributed in z<0 and z>0 
regions, respectively. One can see that the three Peregrine solitons form a triangle, and the 
one located at x = 0 is stronger than the other two. The phenomenon can be understood in the 
way that a second-order rogue wave located at ( , ) ( 10,0)z x = −  splits into two second-order 
rogue waves during propagation, and then forms a second-order rogue wave with a large peak 
at (z,x) = (0,0); this process proceeds inversely in the z>0 region, and finally a Peregrine 
soliton reappears at (z,x) = (10,0). We speak of Peregrine solitons when the peaks are well 
isolated; strictly speaking this is not correct. In fact, the profile obtained represents a periodic 
oscillation of the second-order breather along the z-direction. If we choose m = 1, they form 
two pairs of breathers, see the right panel in Fig. 2(a). Note the formation of large rogue 
waves along the x = 0 line. Further increase in m would lead to a repeated structure, formed 
similarly as in Fig. 1. 

If the shifts along x-direction (x1 = 1 and x2 = − 1) are considered, the results are shown in 
Fig. 2(b). For m = 0, the left panel in Fig. 2(b) displays two KMBs with different intensities 
and periods. There are three Peregrine solitons in the left row and six in the right row for the 
same propagation distance. When m = 1, similar results as in Fig. 1(b) are shown in the right 
panel of Fig. 2(b). 
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Fig. 2. Second-order breather solutions based on Peregrine solitons and KMBs. The setup and 
parameters are as in Fig. 1, except that k1 = 1.2i and k2 = 0.8i. (a) Without transverse shifts. (b) 
With shifts x1 = 1 and x2 = − 1. 

Reducing further the value of 1 2| |k k−  (we take now k1 = 1.3i and k2 = 1.4i) leads to a 
different shape of the second-order breather, as shown in Fig. 3. In the left panel of Fig. 3(a), 
we depict the case with m = 0, in which three pairs of small Peregrine solitons along with a 
larger Peregrine soliton coexist around the single second-order rogue wave at the central 
position (z,x) = (0,0). In comparison with Fig. 2(a), one can see that more small Peregrine 
solitons appear between the large Peregrine solitons in this oscillation process of the second-
order rogue wave, due to the smaller value of 1 2| |k k− . By increasing m to 1, the structure 
from the left panel is doubled, as seen in the right panel of Fig. 3(a). From the analysis of 
Figs. 2 and 3, one can conclude that in the limit of 1 2| | 0k k− → , the second-order breather 
consisting of two rows of KMBs will appear (the crossing Peregrine solitons will disappear). 

If we consider the shifts along x- and z-directions, we will obtain m + 1 pairs of KMBs, as 
exhibited in Fig. 3(b). Elucidated by these figures, we find that the periods of KMBs tend to 
be the same in the limit 1 2| | 0k k− → , which means that each pair of KMBs is exactly the 
same. 
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Fig. 3. Patterns of the second-order breathers with k1 = 1.3i and k2 = 1.4i for m = 0,1 from left 
to right. (a) Without shifts. (b) With shifts x1 = 1, x2 = − 1, z1 = 5 and z2 = − 5, respectively. 

Finally, we investigate the second-order rogue wave solution with purely imaginary k1 and 
a complex k2. An interesting structure with several KMBs crossing an AB will form; the 
structures are plotted in Fig. 4. As a simple example, we choose k1 = 1.7i and k2 = 0.5 + 1.7i. 
When one chooses m = 0, as shown in Fig. 4(a), the second-order breather is composed of an 
AB and a KMB. It is worth mentioning that the crossing point is a single fundamental second-
order rogue wave with a “four-claw” symmetric structure around the central peak [30]. If we 
choose m = 2, the wave packet is formed by three KMBs and one AB, as displayed in Fig. 
4(b). In general, these second-order breathers consist of m + 1 KMBs and one AB. The 
maximum intensity is at the central position when m is even, but the intensity is zero there 
when m is odd (not shown). Obviously, this is a typical nonlinear superposition of several 
KMBs crossing an AB. 

For a more general case with two complex modulation frequencies k1 = a1 + ib1 and k2 = 
a2 + ib2, where 0ja ≠  and 0jb ≠ , the profiles of the second-order breather are very complex, 

involving a number of crossing KMBs and ABs; a detailed analysis is beyond the interest of 
this paper, and might be an object of future exploration. 

 

Fig. 4. KM breathers crossing an AB with k1 = 1.7i and k2 = 0.5 + 1.7i for m = 0,2 from left to 
right (without shifts). 
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4. Conclusion 

In summary, we have investigated the NLS equation with a simple quadratic potential 
modulated by a spatial diffraction coefficient in an anisotropic inhomogeneous nonlinear 
medium. The second-order breather solutions are constructed by the similarity transformation. 
Different nonlinear superpositions of KMBs, ABs, and the Peregrine solitons are presented by 
selecting two modulation frequencies and the quantum modal parameter. The controllable 
behavior of KMBs, ABs, and Peregrine solitons forming second-order breather solutions is 
also discussed. An important message is that rogue waves can arise in the analytical second-
order breather solutions of NLSE with a quadratic potential, without a need to invoke 
statistical methods to locate them. The results obtained here may be helpful in finding new 
ways of manipulating the second-order breathers experimentally in the inhomogeneous 
nonlinear media. 
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