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Abstract— In this paper, the extended Kudryashov’s method has been successfully implemented to obtain
optical solitons and other solutions to Kudryashov’s model in fiber Bragg gratings. Dark and singular optical

solitons emerge from the scheme along with their respective existence criteria.
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1. INTRODUCTION

The engineering marvel of optical fiber Bragg grat-
ings (BGs) has left a lasting impression in the field of
optoelectronics [1—11, 17—25]. As mentioned earlier,
the newly proposed model, namely Kudryashov’s
equation (KE), has opened up a flood of opportunities
in the field of nonlinear optics [12—16]. Here we are
on yet another avenue with KE, namely its applicabil-
ity to fiber BGs. This innovative technological miracle
is applicable to optical fibers when the much needed
delicate balance between chromatic dispersion (CD)
and fiber nonlinearity is at stake if CD runs low. In
such a situation, BGs artificially introduces induced
dispersion that restores this balance for sustainability
of soliton transmission along intercontinental dis-
tances. Today’s paper, for the first time, studies fiber
BGs with KE in presence of dispersive reflectivity. KE
was introduced during 2019 and was later applied to
study its conservation laws and also it was addressed by
Lie symmetry analysis [12—16]. In the past, solitary
wave solitons as well as soliton solutions were recov-
ered by the aid of a variant form of simplest equation
scheme [30—33].

BGs has also been studied with several forms of
non-Kerr refractive index. It was primarily addressed
with numerical schemes although lately analytical
approaches have been implemented [8—11, 23—26].
Analytically, for parabolic law nonlinearity, BG has
been studied using Jacobi’s elliptic function [23]; for
quadratic—cubic nonlinearity, sub—ODE approach
was adopted [24]; for parabolic—nonlocal combo
nonlinearity, three integration schemes were imple-

mented and they are unified Riccati equation method,
new extended auxiliary equation scheme and unified
auxiliary equation algorithm [25]. Finally, for polyno-
mial law, the sub—ODE approach was once again suc-
cessfully applied [26]. Today’s paper focuses on the
study of soliton solutions with fiber BGs, having KE as
its platform, in presence of dispersive reflectivity. The
adopted scheme of study in this paper is extended
Kudryashov’s method. The details are inked in the rest
of the paper after drawing a schematic pen-picture to
the model.

1.1. Governing Model

The governing KE with an arbitrary power of non-
linearity is given by [12—16]:

ig, +aqe + ( by by g+ b4|q|2”Jq =0, (1)
g™ lal

withi = x/—_l, where the first term is the linear tempo-
ral evolution, while the coefficient of a represents
chromatic dispersion (CD) and the constant coeffi-
cients b, for / =1, 2, 3, 4 are nonlinear and represent
law of refractive index of an optical fiber that accounts
for self-phase modulations (SPM). Then, the nonlin-
earity index # is the power law parameter. The follow-
ing subsections will introduce KE in fiber BGs with
three cases, namelyn =1, n =2 and n = 3.

One must note that for equation (1), the case when
lgf = C, #0 also permits solutions that have been
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recently discussed [27—29]. It must also be noted that
equation (1) can be rewritten as:
. 2 3 4
(ig, + aq..)|al™ + (b + bla|" + bla" + bilg"") g = 0,
which no longer has division by zero problem.

1.I.1. CASE—I: (n=1)

For optical fibers with differential group delay,
KE (1) splits into two components that leads to the
effect of fiber BGs at n = 1. Thus, the vector—coupled
KE reads

iu, +ayv,, + 2f1u S+ dt
bl + el WP+ 1 @)
+ e1u\/|u|2 + |v|2 + (g1|u|2 + h1|v|2)u +ioyu, + P =0,
iv, + apu,, + 2f2V S+ ‘212‘/ ;
b el Wl )

+ e2V\/|V|2 + |u|2 + (g2|v|2 + h2|u|2) v +io,v, + Bu =0,

Where aj’ .fj’ bj, cj9 dj: ej’ gj, hja (Xj and B/" (.] = 172)
are constants. Here, the dependent variables u (x,7)

and v(x,7) represent forward and backward propagat-
ing waves, respectively while the independent vari-
ables x and f represent spatial and temporal variables,

respectively. Next, the coefficients a; for j =1,2 are
the coefficients of dispersive reflectivity, while b, and
g, are the coefficients of SPM and the coefficients c;
and h; represent the cross—phase modulation (XPM).
The coefficients f;, d; and e; represent the combina-
tion of SPM and XPM. Finally, o; represent inter—
modal dispersion and 3 ; are detuning parameters.

1.1.2. CASE—II: (n=2)

For optical fibers with differential group delay, KE
splits into two components that leads to the effect of
fiber BGs with n = 2. Thus, the vector—coupled KE
reads:

Siu

+
b1|u|4 + c1|u|2|v|2 + d1|v|4

+ (r]|u|2 + ql|v|2) u 4)

iu, + ayv,
L a4
g1|u|2 + h1|v|2
+ (§1|u|4 + C_‘l|u|2|v|2 + nl|v|4)u +ioyu, + By =0,
fHv
b2|v|4 + 02|v|2|u|2 + af2|u|4

+ (r2|v|2 + q2|u|2) v 5

v, + au,, +

L eV
glv[ + hlu’

+ (§2|V|4 + §2|V|2|u|2 + T]2|u|4) v +id,y, +Bu=0,
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where a;, fj, b;,¢;, d;, e, 85 by 155655 €, €My @
and B, for j = 1,2 are constants. The coefficients a;
stand for dispersive reflectivity, while the coefficients
b;, g;, r; and Ed give SPM and the coefficients c;, d;,
h;, q;; m; and ¢ ; are XPM, respectively. The coeffi-
cients f; and e; represent the combination of SPM
and XPM. Finally, o; represent inter-modal disper-

sion and [3 ; are detuning parameters and / = V1.

1.1.3. CASE—III: (n=3)

For optical fibers with differential group delay, KE
splits into two components that leads to the effect of
fiber BGs for n = 3. Thus, the vector—coupled KE is:

+ S
b1|u|6 + cl|u|4|v|2 + a71|u|2|v|4 + e1|v|6
giu
(8" + Gl +
X \/|u|2 + |v|2 + (q1|u|6 + r1|u|4|v|2 + 51|u|2|v|4 + 91|v|6) u
+ ioyu, + B =0,

fHv

+
b2|v|6 + c2|v|4|u|2 + a’2|V|2|u|4 + ez|u|6

iu, + v,

+

+u (11|u|2 + m1|v|2)

(6)

iv, + ayu,,

&V ; ) R
e ey AU

) v + > + (q2|v|6 + v + Sl ul* + 62|u|6) v

+ iOLQVX + Bzu = O,

where a;, f;, b,,¢;,d;,e;,8,8;,,8;,1;,m;,q,,r,,9,,
0,0, Bj and Bj for j = 1,2 are constants. The coeffi-
cients a; are the coefficients of dispersive reflectivity,
while the coefficients b, and g; give SPM and the coef-
ficientsc;, d;, e;, r;, 8, and 6, are XPM, respectively.
The coefficients f;, g;, ﬁj, Cj, [; and m; represent the
combination of SPM and XPM. Finally, o; represent
inter-modal dispersion and 3 ; are detuning parameters.

2. MATHEMATICAL ANALYSIS (CASE-I: n=1)
2.1. Chirp—Free Solitons

To this aim, we introduce the transformation:

u(x,t) = @ (E)exp[m(x,1)], ()
v (x,1) = 0, (&) exp[in(x,1)], 9)
and
E=x-vt, nN(x1)=—kx+or+86,, (10)
Vol. 65 No. 11 2020
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where v, k, ® and 0, are all non zero constants to be
determined which represent the velocity of soliton,
frequency of soliton, wave number and phase con-
stants, respectively, while @, (), @, (§) and n(x,7) are
real functions which represent the shape of the soliton
pulse and phase component of the soliton, respec-
tively. Substituting (8) and (9) along with (10) into
Egs. (2) and (3), separating the real and the imaginary
parts, we have:

@@, + (koy — )@, + (Bl - alsz(Pz
d
e S L R GV)
bo; + a9 \/(pl + @,
+ (glq’lz + hl(Pij(Pl =0,
Q) + (ko, — )@, + [ -k )
d
bSOy G g gl (12)
b,p; + o) \/(p2 + @
+ (295 + 1ot |9, = 0,
and
(o4 =v) @) — 2ak@; =0, (13)
(0, = V)@, —2a,k@; = 0. (14)
Let us set
9, (&) =1 (§), (15)

where A, is a non zero constant, such that A, # 1. Con-
sequently, Egs. (11) — (14) change to:

" d
ah @@ + /i — 0,
(bl +oh ) \/1 + A
+ [koy — 0+ (B, —ak’ A, |of (16)
+ e+ 7"12(P13 + [gl + hlhlz)(P? =0,
" Sl M
a0, + +
o (b27\12+czj \/1+}L12 l
+ | (ko = 0)h + B, — ak® | of (17
+ eMy1 + 7‘112(1)13 + (g27\.12 + h2)7‘11(P? =0,
and
[(0(1 — V) - Zalkkl}(pi =0, (18)
[(0, =v) Ay = 2a,k] @ = 0. (19)

From Egs. (18) and (19), the velocity of the soliton v
is given by:

Vv = OCl - 2alk7\11, (20)
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and

(21)
From (20) and (21), we have the constraint condition:

2alk}\/12 + ((X’Z - (X1)7\,1 - 2a2k = 0.

Egs. (16) and (17) have the same form under the con-
straint conditions:

(22)

a, = ah,,
Sl (bl + 017"12J =/ (blez + Czj,
M =d,,
(kot, = @) Ay +B, — ak® = ko — o+ (Bl —ak )7\‘1(:23)
el =e,

[827%2 + thxl =&t hl7\'12~

Eq. (16) can be rewritten in the form:

O + A+ AQ + A + Ay + A =0, (24)

where
d
By=—r A= — T
e (bl +oM ) gl + A
kOLl - (l)+ [Bl - alkzjk]

A, =
’ a,

Al = e+ A B [3’1 + hlklz)
3 = — .

’ 4 —
a\, ah,

In the next subsection, we will solve Eq. (24) using the
following method:

(25)

2.1.1. Extended Kudryashov’s Method

According to this method, we assume that Eq. (24)
has the formal solution:

0& =4+ > A EVE)

s=1 i+j=s

+ Z 3 By @ ®)

s=1 i+j=s

where Ay, A; and B;(i, j = 0,1,2,..., N) are constants to
be determined, N is a positive integer which determined
by balancing the highest order derivatives and the nonlin-
ear terms in Eq. (24), while the functions ¥(§) and (&)
satisfy the Bernoulli and Riccati equations:

x'E) = Ry’ € - RxE), R, #0,

y'(€) = S2\|12(§) +SYE@) +S,, S, #0,

(26)

27)
(28)
Vol. 65
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respectively, where R, R, .S, S, and S, are constants. It is well known that the solutions of Eq. (27) are given by:

R, + R . R B0
X(g) — 2 + 1I CXp( l& + &0) (29)
- s R] = 09
RE+E,
and the solutions of Eq. (28) are given by:
~LIs +utanh ﬂmgo L if >0
25, | 2
~ L s +Jucoth ﬂmgo ,ifu>0
25, | 2
W = -5 Fuean[ e g, | i u <o, (30)
25, | 2
L S, + /L cot ﬂ§+§0 ,if u<0
25,| 2
S 1 .
- , ifu=0
28, SE+E
where [L = S} — 45,5, and &, is an arbitrary real con- _385W2A, = 2A, _S o
stant. AO - 6A4 ) AO,I - A4 2A49
Balancing ¢,¢; and (pf in Eq. (24), one gets N = 1. Ao =0, By, =0, By=0 R =R,
Now, Eq. (24) has the formal solution: A, (2A§ — 9A2A4j (32)
R =R, Aj=0, A\ =-
(€)= 4y + A X(©) 31 ? » ! 27A;
+ Ao W©) + Bt ©) + Boyw ), o _ 2016, + 357A,
0 — )
where Ay, Ay, Ay1, B,y and By, are constants to be 125,A,
determined. Substituting (31) along with (27) and (28)  provided
into Eq. (24), collecting all the coefficients of
Ay <O. (33)

W x®]", (¢,m =0,1,...,8) and setting these coef-
ficients equal to zero, one obtains a system of algebraic
equations which can be solved using the Maple to get
the result:

Substituting (32) along with (29) and (30) into
Eq. (31), one gets the following solutions:

(D) Egs. (2) and (3) have the dark soliton solutions as:

2
u(x,1) = = Ay £,3(A2 =3, | tanh _A3 =38R iy 4 &, || explit—kx + of + 0)] (34)
3A, 6A,
v(x,1) = Mu(x, 1), (35)
and the singular soliton solutions as:
2
u(x,1) = ——| A, + 3[A§ - 3A2A4j coth /—%@c —vi) +&, | lexpli(—kx + of + 0)], (36)
4 4
V(X, t) = 7\‘lu(-x, t)a (37)
provided
Al —3A,A, >0 and A, <O0. (38)
The profile of dark solitons (34) and (35) is given by Fig. 1.
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 65 No. 11 2020
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Fig. 1. The numerical simulations of the solutions (34) (a) and (35) (b) with the parameter values q; = —0.67, a, = —0.58,

e =0.86, g =034 iy =021, k =098, v =1.6, 0y = 0.46, 0 = 0.62, B; = 0.17, A = 0.87, & = 0.13, ® = 0.52.

(ID) Egs. (2) and (3) have the periodic solutions as:

2
u(x,t) = —3% A, + 1/—3(A§ ~3A,A, Jtan %x —vi) + &, || expli(=kx + of + 0)],
4 4

V(xa t) = xlu(x: t)a
and the singular periodic solutions as:

1 A} —3A,A
u(x,1) = ———| Ay £ \[=3[A] = 3A,A, Jcot | [F 2220 (x - vit) + &, || expli(—ex + o + 0)],
3A, 6A,
V(xa t) = ?\’lu(xa t)7
provided

Al —3AA, <0 and A, <0.

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS  Vol.65 No.11 2020
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(III) Egs. (2) and (3) have the rational solutions as:

u(x, 1) = A Ay N2,
’ 3A4 AO’1A4(X - Vt) + \/_2A4§0 (44)
X expli(—kx + or + 0,)],
v(x,1) = Mu(x, 1), (45)
provided
A A;
Ay =0, A =—32, A, =—2and A, <0. (46)
27A; 3A,
2.2. Chirped Solitons
To this aim, we introduce the transformation:
u(x,1) = ¢ (§)exp[in(x,7)], (47)
v(x,1) = @, (&) exp[in(x,1)], (48)
and
E=x-vt, N(x1)=6) - o, (49)

where v and ® are all non zero constants to be deter-
mined which represent the velocity of soliton and the

wave number constants, respectively, while (&) rep-
resents the phase function. The functions @, (&), @, (§)
and n(x,7) are real which represent the amplitudes
portion of the solitons and the phase component of the
soliton, respectively. Substituting (47) and (48) along
with (49) into Egs. (2) and (3), separating the real and
the imaginary parts, one gets

aQ; + 0@, + B0, + (v —0y) @0
S0 + d,¢,

V2
b, + @ \/(pl2 + ¢
+ QNG + 03 + (807 + o3y =0,
G,Q) + 0@, + B¢ + (v — 01,) 9,0
— 02(919'2 + 2f2(p2 > d22(p2 - (51)
by, + ;¢ \/(p2 + @
+ €003 + O + (205 + Mo} |0, = 0,
and
(04 =v) 0l +a 00" +2030'| = (52)
(0 =) @) + @y 00" + 2010'| = 0. (53)
Let us set
9, (&) = M9, (§), (54)
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where A, is a non zero constant, such that A, # 1.
Consequently, Egs. (50)—(53) reduce to

i d,

a0, + +
1A 01y (bl N CI}L%) \/1 N 7\.3 (]
| 0+Bh+ (v -6 —adf’ |0} (55)
+ eyl + 7“%@? + [gl + hﬁé)q’? =0,
" A d,\
H09, + f22 2 2 ¢
(bzkz + Cz] \/1 + A5
+0n, +B+ (v - o) A0 a0l (56)
+ ehy1+ 7‘%‘[’13 + (gzﬁ + hz)?bz(P;1 =0,
and
(04 = v) @) +ah, {(ple" + 2(Pie'} =0, (57)
(00 = V) %0} + | 06" + 260 = 0. (58)

By integrating (57) and (58) with zero constants of
integration lead to:

o =""% 59
2a,\, 49
or
o=Vl (60)
2a,

From (59) and (60), one gets the constraint condition:
(61)

From (61), one can obtain the velocity of the soliton v as:

(lgal — az)v + a0 — Mao, = 0.

2
_ Mao, — a0y

(62)
7\'§al —a
Then the corresponding chirp is defined by
oW (x1) = -L[0(8) ~or] =0(5). (63
which can be rewritten as
OW (x,t = =% , 64
( ) { 2a), } (4

where the velocity v is given by (62). Substituting (59)
into Egs. (55) and (56), one gets

A d,

ah "+ +
10 (bl N q}éj \/1 N K; (]
2
+ {QH B, + (V4; ;?1) }(pf + eyl + M0, (65)
17v2
+ (gl + hl}é](p? =0,
Vol. 65 No. 11 2020
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NELY) " dh
¢
b\ + Cz) \/1 + A2 1
(v - 0‘1)2 " (v —ou)(v —oy)
47\15012 2a|
+ e A1+ 2397 + (A3 + Iy | Aot = 0.

Egs. (65) and (66) have the same form under the con-
straint conditions:

GO0 + (

+| oA, +B, - = (P|2 (66)

a = al7\'27
fha(b+ad3) = £i(bAS + e, ),
dzkz = dl’
A (Oh, + By) — ay(v — o) (67)
+ 20, (v — o) (v —oy) = dah, (0 + BA,) + (v — o),

927*2 =€,

2 2

(gzxz + hzjkz = g + h\;.

Eq. (65) can be rewritten in the form:

09 + T+, + F2(Pl2 + F3([)13 + I‘4([’? =0, (638)

AO — 3S]ﬂ_21—‘4 - 2F3
6r4

ki

1273
where
h=—>Ah - r-—%
ak, (bl +017V2j a1+ A5
da, (©+BA,) + (v — oy )
rz — 1 2( B122)2 ( l) , (69)
4a; A,
2
r e+ A _(gﬁhlkz]
3 = ’ 4 — .

ak, ak,

In the next subsection, we will solve Eq. (68) using the
following method:

2.2.1. Extended Kudryashov’s Method

According to this method, one finds that Eq. (68)
has the same formal solution (31). Substituting (31)
along with (27) and (28) into Eq. (68), collecting all
the coefficients of [y(&)][x@®)]", ¢,m =0,1,...,8) and
setting these coefficients equal to zero, one obtains a

system of algebraic equations which can be solved
using the Maple to get the result:

=22 [,

Ay r,

Ty(2r3 -9, |

AIO = 0, BOl = 0, B]O = 0, R] = R], R2 = Rz, FO = 0, rl = — 2 N (70)
| | | 27T,
_ 25 — 61, + 37T,
‘ 125,T, ’
provided
I, <O0. (71)
Substituting (70) along with (29) and (30) into Eq. (31), one gets the following solutions:
(D Egs. (2) and (3) have the dark soliton solutions as:
ul 3 T2 - 30,0 | T(v-a
u(x,t) = ——|I'; +./3|T; = 3L, |tanh |, [— =3 4 (x —vi)+ exp| i Llx—-vt)—ot ||, (72
(x,7) 3T, 3 ( 3 2 4j 6T, )+& p[ (( 2, )( ) ﬂ (72)
v(x,1) = Au(x, 1), (73)
and the singular soliton solutions as:
1 2 | ) oS ((v-o
u(x,ty =——I|I'y +,/3|I'; = 31,1, |coth|,[-—————(x —v¢) + exp| i x—vt)—ot ||, (74
() = =3 T [[2-305, Jeoth | oA L U End CR (74)
V(-xa t) = }LZM(X’ t)s (75)
provided
I -30L,0, >0and I, <0. (76)
(IT) Egs. (2) and (3) have the periodic solutions as:
1 2 I; — 30,0 ((v-o
u(x,t) = ———|Ty + [-3[T; = 3,1, |tan|, [ 2——24(x —vf) + expli|| —= |(x=vt)—ot ||, (77
(1) 3r4“/[3 T, Jtan| | o, v+ G x| i | TP e - v (77)
V(x9 t) = 7\'Zu(xa t)’ (78)
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and the singular periodic solutions as:
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1 2 ;- 30,0 ((v=-o
u(x,t) = ——|Ty +,/-3[T5 =30, |cot |, [2——24(x —vi) + exp| i Lix=vty—ot ||, (79
(o) = =3 T =33 -3nr, Jeot| | oA pmmz]( ) ﬂ (79)
V(X, t) = xZ”(x’ t)9 (80)
provided
I; 30,0, <0and I, <0. (81)
(III) Egs. (2) and (3) have the rational solutions as:
[—oT _
Uty = |3 Ao & exp {i ([V O‘lj(x —vt) - wtﬂ, (82)
30, Ay Ty(x —ve) +y-2T&, 2a\,
V0, 1) = A, 1), G el — L e g
provided b+ )y +dh; (gl + hl)“Sj
r r + [k, — 0+ (B, - ak® |1 | o (90)
Iy=0, I'N'=—-, I'h=—and I, <0. (84)
° : 27T ? 3, ) + (’i + qllgj(p? + (gl + {5+ nllﬁjtlf =0,
a (p3(pn + fé)\@, €2>\,3 (pz
3. MATHEMATICAL ANALYSIS (CASE-II: 2¥ bzx;‘ + czyé +d, (gz;é + hzj !
n=2)
2] 4
3.1. Chirp-Free Solitons * [(kocz — O +B; —ak }@1 oD
2 6 4 2 8 _
To this aim, we make the same transformation (8) + (57»3 + q2)7”3(p‘ + (éz% +Cohs + nz)kﬂ)‘ =0,
and (9). Substituting (8) and (9) along with (10) into  3nd
Egs. (4) and (5), separating the real and the imaginary
parts, we have: (o4 = v) @) — 2akhsq] = 0, 92)
a@; + (koy — @)@ + [Bl - alkz} 0, (0, — V) A0, — 2a,k @} = 0. 93)

+ 19 + e
bl + 09> +di9y g + hs
2

+ (n07 + 0193 )¢y + (E01 + L0703 + i3 @y =0,

(85)

”" 2
Q) + (ko, — 0) @, + (Bz — ak j‘Pl
" S0, + &0,
4 ) 3 2 2
b, + ;030 + 0, £,05 + ¢,
2 2 4 2 2 4
+ [rz(Pz + ¢, )(Pz + (&2([)2 + 5007 + M0 j(Pz =0,

(86)

and
(o, —v) Q) — 2ak@), =0, (87)
(0, = V)@, = 2a,k@; = 0. (88)

Let us set
0, (8) = 20, (), (89)

where A, is a non zero constant, such that A, # 1. Con-
sequently, Egs. (85)—(88) change to:

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS

From Egs. (92) and (93), the velocity of the soliton v
is given by:

vV = OLI - 2a1k7\«3, (94)
and
y = o, — 2%k (95)
Ay
From (94) and (95), we have the constraint condition:

Egs. (90) and (91) have the same form under the con-
straint conditions:

a, = as,
Shs(b+edd +dDS) = £ (bAS + Al + dy),
e\, [gl + hllg) =g (gﬂug + hzj,
(kOl, — ) Ay + By — ark” = ko, — o+ (Bl - alkzjxf 7
(703 + a3 A = 1+ g3,
(B3 + GA7 +My A = & + A3 + s,

Vol. 65 No. 11 2020
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Balancing @; (&) @) (§) with @; (&) in Eq. (90) yields
N = % Since the balance number is not integer, then

we take into consideration the transformation:

0® = U3 (),

such that U (&) is a new function of &, Substituting (98)
into (90), one gets a new equation:

(98)

'2 "
U : 20U ;L 0, + (?IU (99)
+ ®2U + ®3U + ®4U = 0,

where
_ Af o ____ 4
als(b+ el +dhy) T aks (g + )
4| ko, — 0+ (B, - ak® s |
ah,
_4@1 + Clkg + 1117\-‘3‘)
ahs

0, =

0, =- , (100)

o  4nta)) o _
3~ al}% ’ 4 =

In the next subsection, we will solve Eq. (99) using the
following method.

-
u(x,t) = L;@

4

~30, +,[3(90} - 320,0, | tanh

and the singular soliton solutions as:

1 [960; —320,0,
= ———(x—-vi)+
81/ °, ( )+ &

v(x, 1) = Au(x, 1),

1275

3.1.1. Extended Kudryashov’s Method
According to this method, one finds that Eq. (99)
has the formal solution

UE©) = 4y + A gx(©) + A, w(©)

+ Box () + Boyw ).
Substituting (101) along with (27) and (28) into
Eq. (99), collecting all the coefficients of

W x®]", (,m = 0,1,...,8) and setting these coefTi-
cients equal to zero, one obtains a system of algebraic
equations which can be solved using the Maple to get
the result:

(101)

45,430, - 30 S
Ao - #, AO,] — X2 /3@4, Al,O =0,
8@4 64
BO,I = O, BI,O = O, Rl = Rl’ R2 = R2,

90? (3®§ - 326264) + 7680207 (102)

0,=0, O, =
: ’ 10246}

5 - -90; +320,0, + 16570,

‘ 645,0, ’

provided ®, > 0. Substituting (102) along with (29)
and (30) into Eq. (101), one gets the following solu-
tions:

(I) Egs. (4) and (5) have the dark soliton solutions as:

1
2

} expli(—kx + oz + 6,)], (103)

(104)

1

. 1
u(x,0) = || 30, +,[3(90} - 320,08, |coth| L 905 = 32004, _ iyt e, |1 explit—kx + o +6,)) (105)
30, 8 o,
V(X, t) = ?\.31/{()(7, t)a (106)
provided
90; —320,0, > 0 and O, > 0. (107)

The profile of the solitons (103) and (104) is given by Fig. 2.

(IT) Egs. (4) and (5) have the periodic solutions as:

L
u(x,t) = {8@

4

and the singular periodic solutions as:

2
30, + [-3(902 -320,0, |tan [é /—%@ v+,
4

V(-x’ t) = 7\,3”()(, t)a

1
2

] expli(—kx + ot + 6,)], (108)

(109)

1

_ L
u(x,t) = kg@

4

v(x,1) = Asu(x,1),

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS

2
-30, + \/—3[9@§ —320,0, |cot [é \/_993—@ —vi)+§&,

- 32@264 exp[i(—kx + O + 90)]’ (110)

0,
(111)

Vol.65 No.11 2020
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(@)

(b)

Fig. 2. The numerical simulations of to the solutions (103) (a) and (104) (b) with the parameter values ¢ = —1.83, a, = —1.11],
k=0.65 ¢ =058, =082, v =179, oy =0.34, o, =0.93, B; = 0.4, A3 =0.61, ; =0.37, & =0.81, {; =0.56, n; = 0.69,

o=0.78.

provided

90; - 320,0, <0 and ©, > 0.
(IIT) Egs. (4) and (5) have the rational solutions as:

/ 2
u(x,t) = _36, A\30, expli(—kx + ot + 6,)],
8@4 A0,1®4(x - Vt) + \'3@4 0
v(x,1) = Au(x, 1),
provided
4 2
)= - 27@33, 0, =0, @2:9@3,

40960; 320,

0; <0and O, > 0.
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3.2. Chirped Solitons

To this aim, we make the same transformation (47)
and (48). Substituting (47) and (48) along with (49)
into Egs. (4) and (5), separating the real and the imag-
inary parts, we have:

aQ; + 0@, + B, + (v —0y) @0 — ‘ll([’ze'2
Sio, e

by +cQio; +d @, &) + h

+ (ng} + 003 )0, +(&i0! + Ci0T0s + 193 o =0,

+ (116)

12

a0, + 0P, + B¢ + (v — 0,) 9,0 — a,0,0
S0, &0,
bypy + Q0 + @ 895 + o
2 2 4 2 2 4
+ (’E(Pz + @0 )(Pz + (E.-z(Pz + 5,000, + M0 J(Pz =0,

and

+

(117)

(00 = v) 0} +a | 06" + 2656 | = 0, (118)
(0, =v) 9, + a, {(ple" + 2@}6‘} =0. (119)

Let us set
0, (&) = 1,0, (€), (120)

where A, is a non zero constant, such that A, # 1.
Consequently, Egs. (116)—(119) change to:

TR et
b +chi + dh; (gl + hlkij

alM(Pf(Pi' +

+ {w+[317u4 v -0 —almeﬂ(p;‘ (121)
+ (’i + ‘117&1]([)16 + (&1 + Clxi + ﬂﬂ»i)(Pf =0,
3 n ﬁ)\a4 827\44 2
a +
2P by + cohi +d, (gzki + hzj(pl
+ |:(,07\,4 + B2 + (V - a2)}\446' - a26'2:|(.p? (122)

+ ("2731 + 612)7V4(P16 + (ﬁzkj + szczt + T\sz(P? =0,

and

(00 = v)0i +ah, 08" +2000'| =0, (123)

(o, = V) A0, + ay {(ple" + 2(p;9'} =0. (124)

By integrating (123) and (124) with zero constants of
integration lead to:

g =’ =%
2a\,

(125)
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or
0 = (V‘ﬂ_ (126)
2a,
From (125) and (126), one gets the constraint condition:
(M@ —a, v + a0 = Mg, =0, (127)

From (127), one can obtain the velocity of the soli-
ton v as:

2
— 7L4a1062 - a2OL1

(128)
Aia, — a,
Then the corresponding chirp is defined by
SW (x,1) = —%[e(a) —of] =0 (),  (129)
which can be rewritten as
SW (x,1) = —| L=, (130)
( ) |:2a17‘4 }

where the velocity v is given by (128). Substituting (125)
into Egs. (121) and (122), one gets

adagior +— @
P b +cA; +d\; [gl + hAS

jtpf

2

Vv —0o

+ {w"' Biry "'( 4017‘;) }Pi‘ + (”1 + %7"1]@? (131)
+ (&1 + Clki + Thli)q)f =0,

Sk &My
bzki + C27\421 +d, [827& + h

3 n

GO P +

jtpf

2
- {0)7»4 +B, - 02(;;;1) +Z %2):/ — al)} @ (132)
4 1

+ ("27‘421 + Q2)7V4(P? + (&27‘-3 + C27\-z21 + Tb]MP? =0.
Egs. (131) and (132) have the same form under the
constraint conditions:

a, = a\y,
Fha(B+ i +dAL) = £i(bAG + Al +dy ),
el (gl + hlki) =g (gzki + hz),

Ahga, (Ohy +By) — arv — o) (133)

+ 20 (v — o) (v —oy) = dah, (0+BAy) + (v — o),
("27\3; + qz)M =h+ qlki,
(23 + CMd + 1y Ay = & + EAG + AL

Balancing ¢; (§) ¢ (€) with @/ (&) in Eq. (131) yields

N = % Since the balance number is not integer, then

we take into consideration the transformation:

0 =22(2),

Vol. 65

(134)

No. 11 2020
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such that Z(§) is a new function of & Substituting
(134) into (131), one gets a new equation:

7' -277" +1, +11,Z

(135)
+ ILZ>+11,2° + 11,2 =0,

where

I, = - 4/ ,
ah, [bl +oh: + dlki)

.

ahy (gl + hlxéztj,

_daly (04 BAg) + (v —oy)
272
a A\

4(”1 + 417"421) B _4[};1 + Clki + nlkij

Mm=-—" T,=
3 ahs 4

In the next subsection, we will solve Eq. (135) using
the following method:

Hl = -
i (136)
H2 =

b

al,

3.2.1. Extended Kudryashov’s Method

According to this method, one finds that Eq. (135)
has the formal solution

ZAYED et al.

ZE) = A + AI,OX(EJ)
+ A W& + Biox ' ©) + By (©).
Substituting (137) along with (27) and (28) into
Eq. (135), collecting all the coefficients of

W x®]", (,m = 0,1,...,8) and setting these coefTi-
cients equal to zero, one obtains a system of algebraic
equations which can be solved using the Maple to get
the result:

(137)

45,4311, - 3I1 S
A= TN gy, = 22,
8H4 H4
Al,() = 09 BO,I = 09 BI,O = Os
R=R, R =R, (138)

OIT; (311 — 32IL,11, | + 768TT5TT;

=0 I, =- :
: ° 102411
S = —9TT; + 32I1,I1, + 16511,
0 645,11, ’

provided I1, > 0. Substituting (138) along with (29)
and (30) into Eq. (137), one gets the following solu-
tions:

(I) Egs. (4) and (5) have the dark soliton solutions as:

1
| ; | Jori2 —32m,m, Hz
W, ) = || 311, + 3(om2 — 321,10, Jtanh | L PR =32 e e
it
V(1) = hgu(x, 1), (140)

and the singular soliton solutions as:

_
u(x, 1) = |8H

4

~3T1, + [3(9IT; = 321,11, | coth

1
2 2
LM = 32T, e
8 I,

} (141)

((v=oy),
o]

v(x,1) = hu(x, 1),

provided

9IT3 — 32I1,I1, > 0 and I1, > 0.

(II) Egs. (4) and (5) have the periodic solutions as:

_ L
u(x, 1) = |8H

4

2
=311, + ~3(911} - 321,11, | tan [é J_w@ R

(142)

(143)

I, ] (144)

1Y =% o —yp) —
ol o]

v(x,1) = Au(x, 1),
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and the singular periodic solutions as:

_
u(x,t) = |8H

4

=311, + ~3(911} - 321,11, ) cot [g \/

((v=ou),
X exp [z (( 20k, j(x vt) mtﬂ,

v(x, 1) = Agu(x, 1),

provided

9IT; — 321,11, < 0 and I, > 0.

(IIT) Egs. (4) and (5) have the rational solutions as:

Ay3T,

3,

u(x,t) = {

v(x, 1) = Agu(x, 1), (150)

provided

27114
409611,

0=

1 — Y

) (151)
_ 9115

- 3210,

2 ,H3<OandH4>0

4. MATHEMATICAL ANALYSIS
(CASE—III: n = 3)

4.1. Chirp-Free Solitons

To this aim, we make the same transformation (8)
and (9). Substituting (8) and (9) along with (10) into
Egs. (6) and (7), separating the real and the imaginary
parts, we have:

@@, + (koy, — )@, + [Bl - alkz](Pz
+ fi(pl
6 ) 2 2 6
b, + a0, ¢; + di0;0, + €0,

+ 811 + (10} + me3 | ¢
(£07 + 502 Vo + 3 (i + mio

X NG, + 03 +(a0] +10/9; +8,0703 + 0,03 ¢ =0,

(152)

@@ +(ko, — )@, + (Bz - azsz(Pl
9,
by@s + 301 + dy30) + erp;
" 80,
(8.9 + 500 V93 + o7

X NG +0; + (0,05 + 130 + 5,050 + 0,07 |9, =0,

+

: . (s3)
+ (lz(Pz + myQ, )(Pz

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS
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D 3
W ICTHEE PRI }
I, (146)
(147)
(148)
%
. vV — 0(1
—vi)—t ||, 149
ool (o= r0-] )
and
(04 =v) @) — 2akg; =0, (154)
(0 = v) @y — 2akep; = 0, (155)
Let us set
0 (&) = X5, (§), (156)
where A is a non zero constant, such that A5 # 1. Con-
sequently, Egs. (152)—(155) change to:
arQ0 + h
P b+ cA: + dAs + e\
& 3
+ ¢
(& + G2+ 2
+ [kOLl —(D+(B1 _alkz)ks:i(p? (157)
+ (b +mAs N1+ M)
+ (@ + A5+ 823 + 0" =0,
5 n ﬁ?\«S
a +
P BAS + M+ dAl + e,
+ . &o\s . (Pf
(&27% + C.,z)\/l + s
+ |(koty = 0)As + B, — 0k’ |7 (158)
+ (A5 + myl Ayl +A3g)
and
(04 =v) @) = 2aks¢; =0, (159)
(0 = V) As@) — 2a,kp; = 0. (160)
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From Egs. (159) and (160), the velocity of the soliton
v is given by:

v =0y — 2ak\s, (161)
and
v = o, — 22K (162)
As

From (161) and (162), we have the constraint con-
dition:

2ak\: + (0, — o) As — 2a,k = 0. (163)

Egs. (157) and (158) have the same form under the
constraint conditions:

a, = ajhs,
Shs [BAS + S + ) + ey
= fib + a3 + 23+ es),
&oAs (gl + Clp\'g) =& (‘:27\2 + CzJ,
(kot, — ®)As + By — ark’
=ko, — o+ (Bl - alkZJKS,

(lzxg + mchlzjks =l + ms,
g+ A+ AL+ 0L = g + A+ S+ 0L
Balancing @; (&) o] (&) with ¢, (€) in Eq. (157) yields
N = % Since the balance number is not integer, then

(164)

we take into consideration the transformation:

1
08 = H*(§), (165)

such that H(§) is a new function of & Substituting
(165) into (157), one gets a new equation:

25,

AO = AO? AO,] = 09 AI,O = 05 BO,I = _\/—6’
—ady

54,0, + 29,

|50, (50, - Q47 | - 44,05

ZAYED et al.

" 12
+ QH +QH +QH" =0,

where
A
aks(b + A3+ dAs +e)s)
& = % 2 2’
ahs (él + C,lksj\/l + A5
o - 9/ koy — o+ (B, - ak’ JAs]
2 aks
o - 9[11 + mlxﬁj\h +A2
P a\s
_9(ay+rA + 85 +0A3)

4=
aks

In the next subsection, we will solve Eq. (166) using

the following method.

Q,

, (167)

b

4.1.1. Extended Kudryashov’s Method

According to this method, one finds that Eq. (166)
has the formal solution

HE) = A4+ Al,OX(&)

+ Ao ©) + Bt ©) + Boyw ).
Substituting (168) along with (27) and (28) into
Eq. (166), collecting all the coefficients of
(W@ x®]", (,m = 0,1,...,8) and setting these coefTi-
cients equal to zero, one obtains a system of algebraic

equations which can be solved using the Maple to get
the result:

(168)

B],O = 0, Rl = R], R2 = R2, SO = So,

, (169)

S Y
1 S ,—_94 2
25Q,07

Q) = _%’ 0

208,90,

8Q; —125Q,Q;

b

provided Q, < 0, Q; # 0 and S, # 0. Substituting (169) along with (29) and (30) into Eq. (168), one gets the fol-

lowing solutions:
(I) Egs. (6) and (7) have the dark soliton solutions as:

Ao\/Q3 (403 + 125919i)tanh[% J

407 +125Q,Q; x

3

—v) + & | —25Q,Q, + 24,

u(x,t) =

Q3 (408 +1250,0} Jtanh [% \/

405 +125Q,0; x

(170)

—vt) + &y | —2Q5 — 54,20,

X expli(—kx + o7 + 6,)],

v(x,1) = Asu(x,1),
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and the singular soliton solutions as:

1
3
AO\/Q3 (407 +125Q,0Q} |coth| L M( —vi) + & | - 25Q,Q, + 24,07
10 Q.Q,
u(x,t) = (172)
(403 +1250,07coth | L A0 e 002 5400,
10 Q.Q,
X expli(—kx + ot + 0,)],
v(x,1) = hsu(x, 1), (173)
provided
Q,(4Q3 +125Q,Q7 ) > 0 and Q, < 0. (174)
The profile of the solitons (170) and (171) is given by Fig. 3.
(II) Egs. (6) and (7) have the periodic solutions as:
1
3
A5 (405 +1250,03 Jtan {]10 /%( i)+ & |- 2500, + 24,2
w0 = 40 1325:2 Q2 (75)
_ 33 + 1258228 —20% —
|- (4Q) +1250,0; Jtan {]0\/ oo o &, |- 202 - 54,0,0,
X expli(—kx + of + 0,)],
V(x7 t) = 7\5“(?@ t)a (176)
and the singular periodic solutions as:
1
3
AO\/—Q3 (493 +125Q,Q7 | cot {110 /%( —vi) + & | - 25Q,Q, + 24,0
0= 40 1325;2 Q a7
3t 4 2
|- (493 +1250,05 | cot { L \/9—94( —vi)+Ey | =207 — 54,0.Q,
X expli(—kx + ot + 0,)],
V(x? t) = }\‘SM(xa t), (178)
provided
Q, (4Q§ + 1259@2] <0and Q, <0. (179)

(III) Egs. (6) and (7) have the rational solutions as:

1
205 +54Q, [, , 109, ’
5Q, (2Q; + 5490, )—-Q,4 (x — vt) — 10Q, (50, B, & — 1) (180)
x expli(—kx + oz + 6,)],

M(X,t) = |:AO -

v(x,1) = Asu(x, 1), (181)
provided

8Q; 0= 40, ’

625Q; 125Q;
2

Q, = 62, and Q, <0.
25Q

4

0

(182)

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS  Vol.65 No.11 2020



1282

Fig. 3. The numerical simulations of the solutions (170) (a)
and (171) (b) with the parameter values g =-2.47,
a =-195 g =0.74, k=046, } =0.35 m =0.98,

@ =087, =015 v=22 o5=04] o, =0.69
8, =026, As=0.79, & =0.52, & =0.63, { =0.29,
0, = 0.14, Ay = 0.59.

4.2. Chirped Solitons

To this aim, we make the same transformation (47)
and (48). Substituting (47) and (48) along with (49)
into Eqgs. (6) and (7), separating the real and the imag-
inary parts, we have:

aQ; + 0@, +B,0, + (v —0y) @0
S0
5 3 2 2 4 6
b, + 0, + di0; 0, + €,

+ 81 +[10; + me; | ¢
(£07 + 503 Vo + @3 i + i)

X VG + 03 + (4,07 +16/0; + 8,970; + 0,05y = 0,

- al(p29'2 +
(183)

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS

ZAYED et al.

&0 + 0@, + B¢ + (v —0,) 0,0

' S0,
- (12([)19 2 +
5,03 + 0301 + drP3P; + &0,
£9,
+ (184)
(8293 + 0,07 V@3 + 01
+ (193 + Mot |0 @; + ¢r
+ (@03 + 930! + 8,030 + 0,09, =0,
and
(04 = V)0 +a| 00" + 200 | =0, (185)
(0 =)@, +a {(ple" + 2@19'} =0. (186)
Let us set
() (&) = Ay (&), (187)

where A, is a non zero constant, such that A, # 1.
Consequently, Egs. (183)—(186) change to:

al @0, + A
P b + A + dhi + e\
8 3

¢
(& + G+
+ [m+ Bhe + (v —0y)0 — alkée'z}(pf
+ (b +mAS T+ 050!
+ (41 + "17\2 + 817V2 + 917‘2]([’}2 =0,
a0, + Soke
P AL + e hi + doAi + e,
+ - & . (Pf
[&27% + Cz]\/l + g
+ {0);\,6 + B2 + (V - O(.2)7u69' - a2e'zj|(pf

+

(188)

(189)
+ (LAe + mygt A1+ Agor
+ (@6 + mAE + 3,08 + 6, A0y = 0,
and

(04 = v) 0} +ake 98" +2018'| =0, (190)

(0t — V) @) + ay {(plﬂ" + 2@}9'} 0. (191)

By integrating (190) and (191) with zero constants of
integration lead to:

o =r"% (192)
2017\.6
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or

v (v —oy) A

0 = (193)

2a,
From (192) and (193), one gets the constraint con-
dition:
(194)

From (194), one can obtain the velocity of the soliton v as:

(Xéal - az)v + a0, — Aia0, = 0.

— 7\4201062 — a0 . (195)
}\'éal -
Then the corresponding chirp is defined by
oW (x1) = -2 [6(2) -] =—61(E).  (196)
which can be rewritten as
SW (x,1) = —| L=%1 |, 197
( ) [ 2a)¢ } (D

where the velocity v is given by (195). Substituting (192)
into Egs. (188) and (189), one gets

N
b+ o\ + dhi + el

ah@ o, +

(v - 0‘1)2

8i A Vi
daks | (198)

3
EYSZONET o {
X (P16 + (11 + mﬁ»éjmqhg
+ (@ + 7§ + 8¢ + 0A¢ i = 0,
az(pls(p'l' ’ bzkg + 02722 7:-6 d27\.§ + e,
+ &g (P13
(};27"; + Cz)\/l + Ao
a(v—o,) L)y -
Ahoa; 2q,
+ (LAg + mt A1+ Acer
(@06 + mAE + 8 + 0, | As0r” = 0.

Egs. (198) and (199) have the same form under the
constraint conditions:

+ o+ BAs +

a2 = a17\.6,
Fhe (b + ke + A + e
&\ (&1 + Clléj =& (ézxé + CzJ,
4hea (0Ag + By) — ay(v — 0‘1)2 + 2 (v = 0)
X (v —oy) =4daks (©+PBAe) + (v — 0‘1)2,
[127\«(2) + mz(pf)kb = ll + mlké,
(@:he + 1§+ B,MG + ;| g
=g, + Khi + O Ag + OA.

(200)
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Balancing ¢; (&) o] (&) with ¢’ (&) in Eq. (198) yields
N = % Since the balance number is not integer, then

we take into consideration the transformation:
1

0 ) =0° (&), (201)

such that Q(€) is a new function of &, Substituting (201)
into (198), one gets a new equation:

300" =207 + 7Y,

2 3 4 (202)
+Y0+7,0°+7,0 +Y,0" =0,

where

Y, = 2 :
ahg (bl + clké + a’lkg + elkg)
9
Ti= & 2 2’
ahg [gl + Cl;\'Gj\/l + Mg
_ 9ah (0 + BiAg) + (v — 0‘1)2

272
a g

, 94 + mlxéj\/l + A2
T al7\’6
9(q + kg + BiAG + OA¢
4 = .
017\,6

In the next subsection, we will solve Eq. (202) using
the following method:

Y, (203)

b

4.2.1. Extended Kudryashov’s Method
According to this method, one finds that Eq. (202)
has the formal solution

0@) =4+ Al,oX(E;)

+ AOIW(E.s) + Bl,oxil(g) + Bo,l\lfil(&)-
Substituting (204) along with (27) and (28) into
Eq. (202), collecting all the coefficients of
W x®]", (,m = 0,1,...,8) and setting these coefTi-
cients equal to zero, one obtains a system of algebraic

equations which can be solved using the Maple to get
the result:

(204)

PAY
Ay = Ay, AO,l =0, A1,0:O7 BO,] == YO, >
—14
Bl,O =0, R=R, R=R, § =23,
_ SAY, +2Y;

5/-r,

S, [SY = Yo | - 443

s, (205)

2

H

208,
v - 257, _8Y3—1257\Y%
0 2T§ ) 0 50Y3Y4 9
Vol. 65 No.11 2020
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provided Y, < 0, Y5 # 0 and S, # 0. Substituting (205) along with (29) and (30) into Eq. (204), one gets the fol-
lowing solutions:

(I) Egs. (6) and (7) have the dark soliton solutions as:

W=

473 + 1257, Y2 x

—25Y,Y, +24,Y>
Y., 114 AT

Ay Y5 (475 +1257, 77| tanh LOJ —vi)+ &,

u(x,t) =
2
JYs (47 + 125707 Jtanh| L JAHIOSTYG e oy s, (206)
10 .Y,
. vV — OLI

X exp|i X —vt)—Ot ||,

o[ (o]
v(x,t) = Agu(x,1) (207)

and the singular soliton solutions as:

AO\/Y3 (473 + 1257, Y7 |coth —25Y\Y, +24,Y2

1\/ 403+ 125705 et

10 T.T,

473 + 1257, Y2
-————(x
10 .Y,

((v=ou),
X exp [1 [[—26117% J(x vt) OJtH,

v(x, 1) = Agu(x,1), (209)

u(x,t) =

JYs (473 + 125707 coth| L vty + &y | =272 = SAYSY, (208)

provided
Y, (4Y§ + 125Y1Yi) >0and Y, <0. (210)
(IT) Egs. (6) and (7) have the periodic solutions as:

/4Y +125Y,Y;
Y, (473 +1257, Y2 3T A0 4
AO\/ 3[ 3 +125Y, 4)ta {10 .Y, (x—vt)+&

J-Ts (473 + 125777 tan [1 ; \/w( —vn)+§&

W =

—25Y\Y, +24,Y;

u(x,t) =

e

v(x, 1) = Agu(x,1), (212)

/41‘3 +1257,Y2
—3 =l dx vy +
10 T, (x—vn)+§,

473 41257,
\/—YS (41’3 +1257 n]c tLOJT( )+,

((v=oy),
col{(52)e--w]

v(x, 1) = Agu(x, 1), (214)

and the singular periodic solutions as:

W=

A=Y (473 +1257,Y% | cot —25Y\Y, + 24,72

u(x, 1) =
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Table 1. Parameter values picked for Figs. 1-3
Parameter Figure 1 Figure 2 Figure 3
a —0.67 —1.83 —2.47
a —0.58 ~L1 ~1.95
e 0.86 NA NA
g 0.34 NA 0.74
hy 0.21 NA NA
k 0.98 0.65 0.46
14 1.6 1.79 2.2
oy 0.46 0.34 0.41
o, 0.62 0.93 0.69
B, 0.17 0.4 NA
M 0.87 NA NA
&, 0.13 0.37 0.52
(0] 0.52 0.78 NA
aq NA 0.58 0.87
] NA 0.82 0.15
A3 NA 0.61 NA
3 NA 0.81 0.63
4 NA 0.56 0.29
n NA 0.69 NA
A NA NA 0.35
m NA NA 0.98
8, NA NA 0.26
As NA NA 0.79
0, NA NA 0.14
A NA NA 0.59
provided
Y, (4Y35 +1257,Y5 ) < 0 and Y, < 0. (215)
(III) Egs. (6) and (7) have the rational solutions as:
1
ety = { 4, = it SAT, {1 .\ 107, H3
57, (25 + 540, =X4 (x — ve) =107, (5Y, By, &y — 1) (216)
(v —oy
X exXp [z [[ 2 )(x —vt) — cotﬂ,
v(x,1) = Agu(x,1), 217)
provided
4 3 2
Yo=-0 oy =25y S8 gy, <o (218)
6257, 1257 257,

The chosen parameter values for the numerical simulations of the solutions (34)—(35), (103)—(104) and (170)—

(171) are indicated respectively in the following Table 1.
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5. CONCLUSIONS

This work is about retrieving soliton solutions to
fiber BGs that is modeled with KE. The three cases of
the power law nonlinearity factor are studied. The
integration algorithm is the extended Kudryashov’s
scheme. This gave way to dark and singular optical
solitons to the model. Thus one inherent drawback is
definitely visible with this algorithm. It fails to retrieve
bright optical solitons to the model. This serves as an
encouragement to handle the model from additional
perspectives. The abundant worksof Kudryashov
serves as a strong encouragement to this end [34—40].
Lie symmetry analysis and other integration schemes
will be applied to hunt down bright optical soliton
solutions. Additionally, conservation laws and other
features are yet to be studied. Thus, this new model on
KE has given us ample issues to address in future. Our
hands are therefore full.
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