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Abstract
The modulation instability of continuous-wave (CW) solutions of the complex Ginzburg–
Landau equation (CGLE), with arbitrary intensity-dependent nonlinearity, is studied. The
variational approach and standard linear stability analysis are used to investigate the stability of
CW and to obtain the criteria for modulation stability in the general form. Analytical stability
criteria are established, enabling the construction of charts of stable fixed points of the
cubic–quintic CGLE. We show that the evolution of modulationally stable and unstable CWs
depends on the CGLE parameters. The analytical predictions for plane wave stability are
confirmed by exhaustive numerical simulations.

Keywords: complex Ginzburg–Landau equation, continuous wave, stability analysis, modulation
instability

(Some figures may appear in colour only in the online journal)

1. Introduction

The complex Ginzburg–Landau equation (CGLE) describes
the propagation of the envelope of the electric field E in a
large variety of nonlinear media [1, 2]. The stability of
solutions of CGLE is one of the most important issues for
possible applications. The modulation instability, which is an
inherent feature of nonlinear equations, may be in some cases
prevented using perfect balance of antagonistic effects, when
the gain compensates losses, and the nonlinearity-induced
self-contraction inhibits linear diffraction and/or dispersion.
Usually, a continuous wave is unstable because of the self-
phase modulation due to the cubic nonlinearity, so that the
quintic nonlinearity is utilized for its stabilization [3, 4]. A
catastrophic collapse is prevented by the quintic nonlinearity
of the opposite sign, while the nonlinear gain compensates
losses [5, 6]. Recently, higher-order conservative non-
linearities with alternative signs have been studied as stabi-
lizing factors in the context of Schrödinger equation [7–9].

Here, we establish the stability criterion for plane waves
described by the CGLE with arbitrary-order conservative and
nonconservative (dissipative) nonlinearities:
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where the functions F and G stand for the nonlinearity and
gain (or loss) in the system, while β characterizes the electric
field diffusion. Such a (1 + 1)-dimensional CGLE has trans-
verse coordinate x and propagates along the z axis. When x
stands for time, the second term in equation (1) corresponds
to wave dispersion, that can be either normal (σ = −1) or
anomalous (σ = 1). An exact plane-wave (PW) solution with
a constant amplitude A reads as follows:

Ω= − +( )E A iqx i zexp . (2)0

0031-8949/14/014002+05$33.00 © 2014 The Royal Swedish Academy of Sciences Printed in the UK1

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. T162 (2014) 014002 (5pp) doi:10.1088/0031-8949/2014/T162/014002

mailto:branislav.aleksic@qatar.tamu.edu
http://dx.doi.org/10.1088/0031-8949/2014/T162/014002


Phys. Scr. T162 (2014) 014002 B N Aleksić et al

2

Figure 1.Regions of stability (shaded areas) of the solution +A for (a) anomalous and (b) normal dispersion. Fixed parameters are β = 0.1 and
δ = 0.1.

Figure 2. Typical evolution of the CW solution +A (upper row) and −A (lower row) in the case of anomalous dispersion (σ = 1), for
parameters ϵ = 2, μ = 2 (a), (c); and μ = 4 (b), (d). Other parameters are β = 0.1 and δ = 0.1.



The transverse wave number q and the propagation
constant Ω, respectively satisfy the equations:

β=( )G A q , (3)2 2

and

Ω σ= − + ( )q F A . (4)2 2

In principle, such a solution could be stable or unstable.
To study the conditions for the stabilization of the PW
solution of equation (1), a small complex perturbation P z x( , )
is added to the amplitude, so that the perturbed electric field
becomes Ω= + − +E A P iqx i z( ) exp ( ). After performing
linearization of CGLE with the perturbed electric field, one
obtains:
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where asterisk denotes the complex conjugation and the prime

denotes the derivative,

′ = ∂ ∂( ) ( )F A F A A

and

′ = ∂ ∂( ) ( )G A G A A.

2. Linear stability analysis

In this paper we restrict stability analysis to a PW with q = 0,
which is also called the continuous wave (CW). We take the

perturbation P in the form = ( )P U z kx( ) sin , with the

complex amplitude = +U z U z iU z( ) ( ) ( )R I that depends on

z. To find an evolution equation for U(z) we use the varia-
tional approach (VA), extended to include dissipation [5, 10].
Applying VA, the following system of linear Euler–Lagrange
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Figure 3. Evolution of the CW solution +A (upper row) and −A (lower row) in the case of normal dispersion (σ = −1), for parameters ϵ = 2,
μ = 5 (a), (c); and μ = 1 (b), (d). Other parameters are β = 0.1 and δ = 0.1.



equations is obtained:
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The eigenvalues of the Jacobian corresponding to the
right-hand sides of equations (6), (7) are given by the fol-
lowing quadratic equation:

Γ α Γ α+ + = 0, (8)2
1 2

where the coefficients are α β= − ′⎡⎣ ⎤⎦( )k A G A21
2 2 2 and

α β σ β= + − ′ + ′⎡⎣ ⎤⎦( ) ( ) ( )k k A F A G A1 22
4 2 2 2 2 2 . Note that

the same result is obtained if the standard linear stability
analysis is used with the perturbation in the form

= + −⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦P V z exp ikx W z exp ikx( ) ( ) . Following Lya-

punov, the steady-state solutions are stable if the real part of Γ
is negative [5]. Therefore, the Hurwitzʼs conditions are:

′ <( )G A 0, (9)2

and

σ β′ + ′ <( ) ( )F A G A 0. (10)2 2

These inequalities, together with equation (3), represent
the general form of the modulational stability conditions for
equation (1). As a concrete example of these stability criteria,

we consider the cubic–quintic CGLE with = −( )F A A A2 2 4

and δ ϵ μ= − + −( )G A A A2 2 4, where δ, ϵ and μ are suitably

introduced real parameters. The solution of equation (3),
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has two branches and it exists only if μ μ ϵ δ< = 4
0

2 . If

μ μ>
0
then equation (1) has only the trivial solution A = 0.

The first Hurwitz condition, equation (9), is fulfilled
(α > 01 ) only for the solution +A2. The second Hurwitz con-
dition, equation (10), is satisfied everywhere for the solution

+A only when σ = +1. For the continuous perturbation k = 0,
the smaller solution −A is always unstable (α < 01 ), with the

growth rate γ γ ϵ δμ= = −R ( ) 4e
2 .

For anomalous dispersion σ = +1 we obtain a stable CW
for μ μ> > 0

0
, together with ϵ > 0. In the case of normal

dispersion, σ = −1, CW is stable only if ϵ ϵ δ> = 4c and
μ μ μ< <
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The regions of stability of the CW solution +A for various

dissipative coefficients ϵ and μ, characterizing the cubic gain
and quintic loss, are shown in figures 1(a) and (b).

3. Numerical simulation

To complete the study of stability of the CW evolution, it is
necessary to make comparison between the analytically
obtained stability domains and the ones resulting from the
systematic numerical simulation. To this end, we implement
the finite difference time domain method, extended and
adapted for CGLE [11]. Exhaustive numerical simulations
confirm analytically predicted stability regions from figure 1.
Indeed, the stability regions obtained by analytical and
numerical computations coincide.

Typical evolutions of the CW solution are demonstrated
in figure 2 for the anomalous dispersion (σ = 1) and in
figure 3 for the normal dispersion (σ = −1). For the nonlinear
loss parameter μ = 2 and μ = 4, the +A solutions belong to

the stable domain in figure 1(a). Therefore, whenever such
solutions are perturbed, the perturbations quickly disappear
during evolution, as can be seen in figures 2(a) and (b). In
both cases the −A solution is unstable, evolving into the trivial
solution. In figures 2(c) and (d) the nonzero amplitude is
vanishing after 50 propagation steps. Also in the case of
normal dispersion for parameters ϵ = 2 and μ = 1 (see
figure 3(d)) the −A solution goes rapidly to zero. However, the
same solution for a larger nonlinear loss parameter (μ = 5)
evolves toward the stable +A solution, with the value 0.685.

This is the same value as the one reached directly by the +A
solution after some oscillations, due to the initial perturbation
(see figure 3(a)). In contrast, for the small nonlinear loss
parameter (μ = 1), the +A solution is out of stability region.

Consequently, the initial perturbation is amplified, leading to
the exponential growth, confirming analytical predictions.
Such a perturbation grows in the modulationally unstable
region, leading to a pattern formation of the initial CW
(figure 3(b)).

4. Conclusion

Using the linear stability analysis, general analytical stability
criteria are established for the CGLE with arbitrary non-
linearities. This general result is illustrated for the CW of the
cubic–quintic CGLE. Based on the obtained stability criteria,
a chart of the stable fixed points for various dissipative
coefficients is drawn. Such analytical results are confirmed by
numerical simulations of the CQ CGLE, allowing comparison
of numerically and analytically obtained domains of stability
for both the normal and anomalous dispersion.
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