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Transverse localization of light in nonlinear photonic lattices with dimensionality crossover
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In a numerical study, we demonstrate the dimensionality crossover in Anderson localization of light. We
consider crossover from the two-dimensional (2D) to the one-dimensional (1D) lattice, optically induced in both
linear and nonlinear dielectric media. The joint influence of nonlinearity and disorder on Anderson localization
in such systems is discussed in some detail. We find that, in the linear regime, the localization is more pronounced
in two dimensions than in one dimension. We also find that the localization in the intermediate cases of crossover
is less pronounced than in both the pure 1D and 2D cases in the linear regime, whereas in the nonlinear
regime this depends on the strength of the nonlinearity. There exist strongly nonlinear regimes in which 1D
localization is more pronounced than the 2D localization, opposite to the case of the linear regime. We find that
the dimensionality crossover is characterized by two different localization lengths, whose behavior is different

along different transverse directions.
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I. INTRODUCTION

In recent years there has been increased interest in the study
of Anderson localization in disordered systems [1,2]. Both
physicists and mathematicians have contributed greatly to the
understanding of various features of Anderson localization
theoretically and experimentally and continue to contribute
even more than 50 years since its discovery [3].

Originally proposed for electrons and one-particle excita-
tions in solids [1], Anderson localization was soon observed
in many other fields of physics, such as acoustics [4], Bose-
Einstein condensates [5], and optics [6,7]. Itis a universal wave
phenomenon that is at the center of recent investigations in
discrete photonic lattices with random structure. Anderson lo-
calization is realized experimentally as transverse localization
in two-dimensional (2D) [8] and in one-dimensional (1D) [9]
random lattice potentials.

A renewed interest is devoted to physical systems with
dimensionality crossover, for example the continuous trans-
formation of the lattice structure from one dimension to two
dimensions [10]. A similar problem is investigated within the
context of electric properties of disordered media [11,12]. A
natural question arises in such systems: When and how does a
system cross over from one to two dimensions? Owing to the
mathematical analogy in describing the evolution of electronic
and photonic wave packets, many related phenomena can be
explored better in the optical domain.

In this paper we analyze the effect of lattice dimensionality
crossover on the Anderson localization of light, specifically
localization in 1D and 2D photonic lattices, including also
localization upon continuously transforming the lattice struc-
ture from two dimensions to one dimension. A systematic
quantitative study of the dependence on both the strength
of disorder and the strength of nonlinearity on the Anderson
localization in such a system is presented. Here, we consider
the Kerr-type cubic nonlinearity. While in the linear regime
Anderson localization is more pronounced in two dimensions
than in one dimension, the situation is the inverse in the
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nonlinear regime. We study localization in the nonlinear
regime with both focusing and defocusing nonlinearity and
compare them with the localization in the linear regime.
There exist strongly focusing nonlinear regimes, where the
localization is more pronounced in 1D than in 2D lattices.
However, in the defocusing regimes, localization is always
less pronounced than in the linear regime.

We investigate a gradual transition of Anderson localization
behavior from the 2D to the 1D case by measuring the quan-
tities of interest: the inverse participation ratio, the effective
width, and the localization length. We observe two different
localization lengths, along the two transverse directions in
the system with dimensionality crossover. The localization of
intermediate states is less pronounced than both the pure 1D
and 2D cases in the linear regime. However, in the nonlinear
regime localization depends on the strength of the nonlinearity.

The paper is organized as follows. In Sec. II we introduce
the model, which describes the propagation of light in a
nonlinear medium with an induced lattice potential. Section I1I
summarizes our results in the linear regime, while Sec. IV
discusses the nonlinear regime vs the linear regime, con-
sidering as well the defocusing localization. In Sec. V we
study dimensionality crossover in the system. Finally, Sec. VI
concludes the paper.

II. THEORETICAL MODEL AND SYSTEM GEOMETRY

We study localization of light in optically induced photonic
lattices and describe the propagation of a beam along the z
axis using the effective nonlinear Schrodinger equation for the
complex electric field amplitude E:

OE 2
i— =—AE —y|E|"E - VE, (1)
0z
where A is the transverse Laplacian, y is the dimensionless
nonlinearity strength, and V is the transverse lattice potential.
Here, it is defined as a sum of Gaussian beams, with peak
intensity Vy. A scaling x/xo — x, y/xo — y, z/Lp — z is
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FIG. 1. (Color online) Dimensionality crossover from 2D to 1D
photonic lattice, showing two intermediate cases.

used for the dimensionless equation, where xg is the typical
full width at half maximum (FWHM) beam waist and Lp
is the diffraction length. The propagation equation is solved
numerically by employing a numerical approach developed
earlier [13]. To study Anderson localization effects, we realize
disorder using random lattice intensity and also random lattice
period. The random lattice intensity V;, takes the values in
the range Vop(1 — Nr) < Vi < V(1 + Nr), where r is the
random number generator from the interval [0,1], and N
determines the degree of disorder. The random lattice period
takes the values from the range [d + 0.5d], where d is the
lattice period.

First, we investigate localization effects in the 1D disor-
dered photonic lattice and compare them with the localization
in the 2D photonic lattice. To observe dimensionality crossover
effects, we start from the 2D square photonic lattice and
increase the lattice period along one transverse direction,
keeping the period along the other transverse direction fixed
(Fig. 1). In such a procedure, after a while one effectively
reaches the 1D lattice, when the 1D arrays are too far away
from each other to feel any interaction. We can then analyze
the crossover from 2D to 1D systems and localization effects
in the intermediate cases, when the distance between 1D arrays
is not that great. With such a gradual transition from a 2D to
a 1D lattice, one may study the dimensionality crossover in
Anderson localization of light.

III. LOCALIZATION IN THE LINEAR REGIME

We start with the investigation of the localization effects
in the linear regime in 1D and 2D lattices. The linear regime
means that the nonlinearity is turned off (y = 0). To observe
the effect of Anderson localization we increase the level
of disorder. Typical results are summarized in Fig. 2. For
quantitative analysis we use the standard quantities for the
description of Anderson localization: the inverse participation
ratio, P = [ I*(x,y,L)dxdy/[[ I(x,y,L)dxdy]™*, and the
effective beam width we; = P~'/2. To compare 1D and
2D Anderson localization, we measure the effective beam
width at the lattice output for different disorder levels. Many
realizations of disorder are needed to measure such quantities.
In our numerics, different disorder realizations are realized by
starting each simulation with different seeds for the random-
number generator. We take 100 realizations of disorder for
each disorder level. Error bars in Figs. 3 and 4 depict the
spread in values coming from different runs.
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FIG. 2. (Color online) Examples of Anderson localization in
1D and 2D photonic lattices. Localized modes are shown in the
linear regime. Physical parameters are crystal length L = 20 mm,
input lattice intensity Vp = 1, lattice period d = 15 um, input beam
intensity |Ey|?> = 0.5, input beam FWHM = 13 um.

Figure 3 presents a comparison between 1D and 2D
localization in the linear regime. Averaged effective widths
normalized with the corresponding input values are presented
as functions of the disorder level. The effective beam width
decreases as the level of disorder is increased in both 1D and
2D cases, but the decrease is more pronounced in the 2D than
in the 1D lattice. We interpret this steeper decrease as the more
pronounced localization. The effective beam width decreases
faster in the 2D lattice as compared to the 1D lattice, as the
level of disorder is increased.

IV. NONLINEAR VERSUS LINEAR REGIME

Next, it is of interest to consider localization effects in
the nonlinear regime and to investigate the influence of
nonlinearity on the Anderson localization. Again, we study
both 1D and 2D cases, in different nonlinear regimes. We
investigate localization for focusing (y > 0) as well as defo-
cusing (y < 0) nonlinearity and compare them with the linear
regime localization. In the case of defocusing nonlinearity,
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FIG. 3. (Color online) Comparison between 1D and 2D Anderson
localization in the linear regime. Effective beam width at the lattice
output vs disorder level. The widths are normalized to their values
without disorder. Points are ensemble averages and lines are least-
square fits through the points. Error bars depict the spread in values
coming from statistics. Parameters are as in Fig. 2.
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localization is less pronounced than in the linear regime, for
both 1D and 2D cases. In the focusing case, the situation is
more complex.

As one starts increasing the strength of the focusing nonlin-
earity in both 1D and 2D lattices, the effective beam width gets
smaller as the level of disorder is increased and localization
gets more pronounced than in the linear regime. However, as
the focusing nonlinearity is further increased, the coexistence
of nonlinearity and disorder leads to different conclusions.
At a certain value of focusing nonlinearity, a threshold is
reached after which disorder produces little influence on the
localization. This strong nonlinearity threshold, when disorder
ceases to produce a significant effect on the localization
process, is different for 1D and 2D cases. For the parameters
we used, these threshold values are y =~ 5 for the 2D case, and
y ~ 9 for the 1D case.

Figure 4 presents a comparison of localization in the linear
and nonlinear regimes for 1D and 2D cases. The value of
y = 0, naturally, is representative of the linear regime. In
both 1D and 2D cases we present the strongly focusing
nonlinear regime with y = 5. In such a focusing regime, the
1D localization is more pronounced than the 2D localization,
and even the defocusing localization is more pronounced than
the focusing for the 2D case [Fig. 4(b)]. In one dimension,
localization is more pronounced in the nonlinear regime
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FIG. 4. (Color online) Linear vs nonlinear localization. Normal-
ized effective beam width at the lattice output vs disorder level for
(a) 1D lattice and (b) 2D lattice. Parameters are as in Fig. 2.
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than in the linear. In two dimensions, it is the opposite:
localization is more pronounced in the linear regime. These
sharp differences between the linear and nonlinear regimes
are signs of competition between disorder and nonlinearity
influences on the localization process.

V. DIMENSIONALITY CROSSOVER

Finally, we investigate the dimensionality crossover from
1D to 2D systems and localization effects in the intermediate
regime. We start from a 2D photonic lattice and increase
the lattice period along the y transverse direction, to reach
separated horizontal 1D lattices. For quantitative description
of the dimensionality crossover on the beam localization, we
use localization length &. The localization length is found
by fitting the averaged intensity profile to an exponentially
decaying profile I ~ exp(—2|r|/£). As the level of disorder
is increased, the output intensity beam profile narrows down,
with exponentially decaying tails, as a direct indication of
strong localization. To study the crossover regime, we calculate
localization lengths from averaged intensity profiles obtained
at the 50% disorder level. We find different behavior along the
stretched and nonstretched transverse directions.

We find two different localization lengths along two trans-
verse directions in the system with dimensionality crossover.
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FIG. 5. (Color online) Crossover regime along the stretched (y)
transverse direction. Averaged intensity profiles are shown for 50%
disorder level in (a) linear and (b) nonlinear regimes. (c) Localization
length measured along the stretched transverse direction vs the
lattice period ratio, for the linear and nonlinear regimes. Red circles
represent localization lengths for the 2D lattice, and blue crosses
represent the corresponding localization lengths for the 1D lattice.
Other parameters are as in Fig. 2.
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FIG. 6. (Color online) Crossover regime along the nonstretched
(x) transverse direction. Averaged intensity profiles are shown for
50% disorder level in (a) linear and (b) nonlinear regime. (c)
Localization length measured along the nonstretched transverse
direction vs the lattice period ratio, for the linear and nonlinear
regimes. Red circles represent localization lengths for the 2D lattice,
and blue crosses represent the corresponding localization lengths for
the 1D lattice. Other parameters are as in Fig. 2.
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They start having the same values for the ratio of lattice periods
equal to 1, but then start to differ. Thus, localization lengths
measured from the localized profiles in the 2D case have very
similar values along both transverse directions. But, in the
crossover regime, as well as in the 1D photonic lattice, there
are different values of the localization lengths along different
transverse directions. Figure 5 shows the localization effects
in the intermediate regime along the stretched transverse di-
rection. Localization lengths are calculated from the intensity
beam profiles; some of those profiles are presented in Fig. 5(a)
for the linear and in Fig. 5(b) for the nonlinear regime. The
Gaussian signature of profiles is still visible in the wings. The
localization lengths along the stretched transverse direction
are presented vs the lattice period ratio, for both linear and
nonlinear regimes [Fig. 5(c)]. Along the stretched transverse
direction, the localization length gets smaller as the lattice
period ratio is increased, although there are some oscillations
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visible in the linear regime. At a certain value of the period
ratio (different for different regimes), a minimum of & is
reached in both the linear and nonlinear regimes. For the lattice
period ratio of 5, we already observe the 1D localization (blue
crosses). The localization lengths there are smaller than the
values for the 2D lattice.

The dimensionality crossover of Anderson localization
along the nonstretched transverse direction is presented in
Fig. 6. The corresponding output intensity beam profiles are
presented in Fig. 6(a) for the linear and in Fig. 6(b) for the
nonlinear regime. While in the 2D case the localization lengths
along different transverse directions are very close to each
other (red circles), in the intermediate regime and in the 1D
case this is not the case. Along the nonstretched transverse
direction, the values of the localization length get larger in the
intermediate regime and reach maximum values for the 1D
case [Fig. 6(c)]. The localization lengths for the lattice period
ratio of 5 and greater are larger than the 2D lattice lengths
and correspond to the 1D case (blue crosses). The existence
of two different localization lengths is closely connected with
the anisotropy of the system, induced by the lattice stretching
in one transverse direction.

VI. CONCLUSIONS

We have analyzed numerically the influence of dimen-
sionality crossover on Anderson localization of light. We
have investigated the transition from 1D to 2D Anderson
localization behavior. We have considered the coexistence
of nonlinearity and disorder in such a system. In the linear
regime, localization is more pronounced in the 2D than in the
1D photonic lattice. But in the nonlinear regime, localization
effects depend on the strength of the nonlinearity. We have
investigated also the localization in the defocusing regime
and compared it with the focusing regime. We have found a
gradual transition in the system with dimensionality crossover,
where there exist two different localization lengths. In the
intermediate cases between one and two dimensions, Anderson
localization is less pronounced than in both the pure 1D and
2D cases in the linear regime. In the nonlinear regime, the
localization in the intermediate cases depends on the strength
of the nonlinearity.
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