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Controllable parabolic-cylinder optical rogue wave
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We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An
analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated
coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity
transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm
the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of
parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation.
Such rogue waves may appear in different forms, as the hump and paw profiles.
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I. INTRODUCTION

The (1 + 1)-dimensional (1D) nonlinear Schrödinger equa-
tion (NLSE) with constant coefficients is an integrable model
which, among many solutions, supports also the ones that
reproduce well the qualitative characteristics of rogue waves
[1,2]. This equation describes diverse physical systems, such as
nonlinear optical fibers [3], Bose-Einstein condensates (BECs)
[4], and others. The relevance of the equation for the study of
rogue waves was lately established in various experiments
carried out in different physical contexts [5,6]. It should be
noted that these solutions—specifically, the Peregrine soliton
and Akhmediev and Ma breathers—by themselves are not
the proper rogue waves but can be used to model them.
On the other hand, the two-dimensional (2D) NLSE with
constant coefficients and external potentials may also support
propagation of different nonlinear wave packets. These wave
packets display many new properties [7–9], such as self-
compression [7] and the generation of vortex-ring beams [9].

The elucidation of mechanisms underlying the formation
and dynamics of rogue waves (also called the freak or extreme
waves) is currently subject to fundamental scientific scrutiny.
They occur in many fields, such as oceanography [10], nonlin-
ear optics [11], and BECs [4]. A comprehensive recent review
of rogue waves can be found in [12,13]. An explicit rogue
wave solution of the standard NLSE was derived in 1983 [14];
after the author, the solution was called the Peregrine breather
or an algebraic breather. Other related rogue wave solutions of
the standard NLSE were found by Ma [15] in 1979; these are
solutions that breathe temporally but are localized spatially,
for example, along a fiber. Akhmediev found a new kind
of solutions, now called Akhmediev breathers [16,17], which
were qualitatively different from the Ma breathers. Akhmediev
breathers oscillate spatially but are localized in time. In other
words, Akhmediev breathers are the exact pulse solutions of
the standard NLSE that extend transversely and may arise
from the transverse modulation instability of a plane wave [17].
On the other hand, the Peregrine breather is a localized solution
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in both space and time [14], and can thus be seen as the limit
of both the Ma and the Akhmediev breathers.

Recently, the first-order and second-order Peregrine rogue
wave solutions—indeed, solutions all the way up to the fifth
order—have been observed in a water wave tank [18,19]. Also,
rogue waves described by the Peregrine rational solution have
been generated in optics [20] and magnetoplasma [21,22].
Thus the validity of the simplest rogue wave solutions has been
confirmed experimentally. A direct approach to finding multi-
rogue-wave solutions of the standard NLSE, based on the mod-
ified Darboux transformation, is presented in [23]. It is worth
mentioning that the rogue wave solutions were exhibited in the
inhomogeneous NLSE with variable coefficients. Periodic and
hyperbolic wave functions may display the dynamical behavior
of roguelike wave phenomena. The profiles of the first-order
and second-order rogue wave solutions of the inhomogeneous
NLSE with variable coefficients can be controlled by a number
of parameters [24]. A common characteristic of all these waves
is that they ride on a finite background.

In this paper, we demonstrate that a class of
parabolic-cylinder optical rogue waves can exist in
inhomogeneous media described by the varying coefficients
in NLSE. Such solutions, which are constructed by means
of the similarity transformation method as products of
the parabolic-cylinder function and the basic rogue wave
solutions of the standard nonlinear Schrödinger equation,
form relatively stable rogue wave patterns while propagating.
These controllable profiles of the optical rogue waves can be
realized by selecting different orders of the parabolic-cylinder
function. Since in general the media exhibiting rogue
waves that can be controlled—such as nonlinear optics and
BECs—are inhomogeneous and can be better described by
the NLSE with varying coefficients, it is expected that the
solutions obtained in this paper will have a greater influence
on the quest for finding changeable but feasible rogue waves
in experimentally controlled environments [12,13].

The paper is organized as follows. In Sec. II, we introduce
the generalized nonlinear Schrödinger equation with spatially
modulated coefficients and a special external potential, and
construct an explicit form of the rogue wave solution of
the model through the similarity transformation. We then
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elaborate on the method of deriving parabolic-cylinder rogue
waves. In Sec. III, we discuss the patterns of first-order,
second-order, and third-order rogue wave solutions mentioned
above. Section III is also devoted to a numerical study of two
solutions in order to compare our numerical simulations with
the analytical predictions, and also to confirm the stability of
localized solutions. Finally, Sec. IV presents our conclusions.

II. THE MODEL AND THE SIMILARITY
TRANSFORMATION

We consider nonlinear optical systems ruled by the gen-
eralized NLSE with spatially modulated coefficients and a
special external potential which can be written in the following
dimensionless form:

i
∂u

∂z
+ d(x)

∂2u

∂x2
+ 2N (z,x)|u|2u + U (z,x)u = 0, (1)

where u(z,x) represents the complex optical wave envelope,
the beam propagates along the z axis, and x is the transverse
coordinate. Here, d(x) is the diffraction coefficient, N (z,x) is
the nonlinearity coefficient, and U (x) is the external potential.
We choose the potential as U (x) = d(x)(ax2 + b), where a

and b are the two real constants to be determined below. Hence,
the external potential is just a simple quadratic potential,
modulated by the diffraction coefficient. In this manner, we
try to stay close to the physically relevant situations, so when
d(x) is constant, the equation reduces to the Gross-Pitaevskii
equation of BECs with harmonic potential. All of the parame-
ters of the equation can be controlled and manipulated by the
choice of medium. The nonlinearity coefficient N (z,x) may
possess different expressions in Eq. (1); thus it may include
many special cases of nonlinear optics and BECs. When
N (z,x) = N (z) and d(x) = 1 in Eq. (1), we have obtained
bright and dark soliton solutions by means of the F-expansion
method in [25]; the first-order and the second-order rogue
waves were also obtained, and the dynamical behavior of those
waves was discussed in our previous work [24]. However, the
important controllable behavior of rogue waves in [24] has
not been investigated, not even for N (z,x) = N (x), and also
the third-order rogue waves have not been analyzed at all. We
focus in this paper on spatially localized solutions for which
N (z,x) = N (x).

In order to find rogue wave solutions of Eq. (1), we presume
a relation between u(z,x) and the solution V (z,Y ) of the NLSE
with constant coefficients, Eq. (3), by utilizing the similarity
transformation,

u(z,x) = A(X)V (z,Y ), (2)

i
∂V

∂z
+ ∂2V

∂Y 2
+ 2|V |2V = 0, (3)

where A(X) is the amplitude, assumed to be a real function.
Here we introduce two similarity variables X = X(x) and Y =
Y (x) to be determined [26,27]. In general, the rogue wave
solutions of Eq. (3) have the following basic structure [1]:

Vn(z,Y ) =
[

(−1)n + Gn(z,Y ) + iHn(z,Y )

Fn(z,Y )

]
e2iz, (4)

where n (=1,2,3, . . .) is a positive integer. The polynomial
Fn(z,Y ) should have no zeros in the region of interest, to ensure
that the solution Vn(z,Y ) is finite everywhere. The first-order
(n = 1), going to the third-order (n = 3) rogue wave solutions
of Eq. (3), can be found by the direct integration method (see
Appendix A).

Substituting Eq. (2) into Eq. (1) leads to Eq. (3), provided
that a system of differential equations for X, Y , and A(X) is
satisfied:

2

A

∂A

∂X

∂X

∂x

∂Y

∂x
+ ∂2Y

∂x2
= 0, (5a)

d

A

[
∂2A

∂X2

(
∂X

∂x

)2

+ ∂A

∂X

∂2X

∂x2

]
+ U = 0, (5b)

and the following two relations hold:

N (x) = 1

A2(x)
, and d(x) =

∫
1

A2(x)
dx. (5c)

These relations establish a connection of the nonlinearity and
diffraction coefficients with the presumed amplitude of the
solution in Eq. (2) and thus can be considered as constraint
conditions on Eq. (1) for solution by the present similarity
transformation method. By assuming the simplest possibility
X = x, one finds the following relation between Y and A:

Y (x) =
∫

A−2dx, (6a)

and a simple differential equation for A:

d2A

dx2
+ (ax2 + b)A = 0. (6b)

Equation (6b) is just the Schrödinger equation for the quadratic
potential, with the well-known solutions. It is a linear second-
order ordinary differential whose general solution can be
expressed in terms of many different special functions. We
opt for the ones with clear physical relevance and a convenient
parameter that allows an easy classification of solutions. More
specifically, if we choose a = −1/4 and b = m + 1/2, where
m is a non-negative integer, differential equation (6b) is
transformed into the canonical form of the parabolic-cylinder
differential equation [28] (PCDE), namely,

d2A

dx2
+

(
m + 1

2
− 1

4
x2

)
A = 0. (6c)

The general solution to PCDE (6c), found by considering the
standard Weber differential equation, is

A = k [c1Dm(x) + c2D−m−1 (ix)] , (6d)

where c1 and c2 (c1c2 > 0) are the two integration constants
that should be chosen so as to avoid introducing singularities
in Y (x). Here, Dm(x) is the parabolic-cylinder function and

k =
√

1/
√

2πm! is the normalization constant. It should be
noted that A(x) is real, although the argument of the second
parabolic-cylinder function is complex (see Appendix B).
Obviously, when |x| → ∞ for any non-negative integer m,
Dm(x) tends to a constant.
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FIG. 1. (Color online) External potential for parameters c1 =
c2 = 1 and different m.

Collecting all these partial solutions together, we obtain an
analytical solution of Eq. (1):

u(z,x) =
√

1√
2πm!

[c1Dm(x) + c2D−m−1(ix)]Vn(z,Y ), (7)

which we will refer to as the parabolic-cylinder
rogue waves. Since |u(z,x)| vanishes at |x| → ∞,
Eq. (7) represents localized wave packets. Here, Y (x) =
k−2

∫
[c1Dm(x) + c2D−m−1(ix)]−2dx and Vn(z,Y ) is defined

by Eq. (4). The novel optical rogue waves from Eq. (7) can be
conveniently classified by the two integer parameters, n and
m. Based on the values of n and m, we can obtain new families
of controllable parabolic-cylinder optical rogue waves.

III. CONTROLLABLE ROGUE WAVES

In this section, we consider the cases when m is a non-
negative integer and discuss the profiles of the first-order
(n = 1), the second-order (n = 2), and the third-order (n = 3)
optical rogue waves. We then check the stability of exact
solutions to Eq. (1) as given by Eq. (7) with the quadratic
potential coefficient a = −1

/
4, by numerical integration of

Eq. (1) with appropriate initial conditions.

A. External potential

When a = −1/4 and b = m + 1/2, the external poten-
tial for different values of parameter m becomes Um(x) =√

2πm!(− 1
4x2 + m + 1

2 )
∫

dx

(c1Dm(x)+c2D−m−1(ix))2 and is shown
Fig. 1. Even though the formula for these optical potentials
is complicated, the potential barriers of such form are readily
realizable experimentally and theoretically [29,30]. Although
the potential includes an explicit quadratic dependence, upon
modulation it resembles more a cubic polynomial function. An
external potential of this form can serve as an anharmonic trap-
ping potential in BECs that includes a tunneling mechanism;
one should keep in mind that interest in the field of BECs
is mostly confined to harmonic and liner potentials [30,31].
Additionally, anharmonic potentials may arise in the dynamics
of waveguides with specially crafted transverse profiles of
the refractive index [32]. A discussion of the influence of
polynomial external potentials on NLSE is provided in [33].
Our interest here is confined to providing exact rogue wave
solutions to the generalized NLSE that ride on complicated-
looking external potentials which display benign-looking
profiles. Note that the parameter m is connected with the
potential, while the parameter n is connected with the order of
the rogue wave solution.

In general, we have a large degree of freedom in choosing
n and m. However, when n is greater than 3, Vn(z,x) in Eq. (4)
becomes quite complex. Thus, in this paper we only study low-
order rogue wave packets. We present the optical amplitude
[In(z,x) =

√
|u(z,x)|2] distributions and their contour plots

for specific values of the two parameters n and m. Clearly, the
optical intensity can be manipulated by the choice of parabolic-
cylinder functions and the order of rogue wave solutions.

B. First-order rogue waves

The simplest case in this family of optical rogue wave
solutions given by Eq. (7) is obtained when n = 1. In Fig. 2,
analytical solutions of the first-order (n = 1) rogue waves

FIG. 2. (Color online) First-order rogue waves with n = 1, shown for m = 0,1,2 from left to right. Top row shows the intensity distributions,
the bottom row the corresponding contour plots.
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FIG. 3. (Color online) Profiles of the fundamental second-order
rogue waves with the parameters α1 = β1 = 0: (a) m = 0 and (b)
m = 1.

are depicted for different m with two integral constants:
c1 = c2 = 1. For simplicity, we keep the constants c1 = c2 = 1
throughout. Figure 2(a) depicts the distribution when m = 0;
the profile displays a single peak with two dips. The peak is
located at (z,x) = (0,0) and there are two transverse valleys
around the peak, akin to the Peregrine soliton. By increasing
m to 1, the localized structure with two humps is generated, as
in Fig. 2(b). Next, when m = 2, Fig. 2(c) shows three profiles
for this localized wave packet. We can see from Fig. 2(c) that
the smaller hump appears at the central position, while the
maximum value is attained at the peaks of the two side humps.
In general, for the parabolic-cylinder rogue wave with different
m, we find m + 1 humps. Furthermore, we find that for even
m there is a hump at the central position, which is the smallest,
and m/2 additional humps on each side of the central position,
whereas for odd m there is no hump at the central position.

C. Second-order rogue waves

For n = 2, there exist two types of parabolic-cylinder rogue
wave families, namely, the fundamental rogue waves with the
parameters α1 = β1 = 0 and the excited rogue waves with
the real parameters α1 and β1, of which at least one is not
zero. The second-order parabolic-cylinder rogue waves exhibit
pawlike patterns, with “four-claw” symmetrical structures
around the central peak. Figure 3(a) shows the intensity of
these wave packets for m = 0. For m = 1, these rogue waves
form more complex structures. Two four-claw profiles along
the transverse direction are seen in Fig. 3(b).

Another case is obtained for parameters α1 = 0 and β1 =
−10. Figure 4(a) depicts a typical example in which three
similar peaks are located at the vertices of an equilateral
triangle, for m = 0. For m = 1, the pattern of the rogue wave
displays six four-claw structures, as seen in Fig. 4(b).

D. Third-order rogue waves

To describe their form, the general third-order rogue wave
necessitates four real parameters, α1, β1, α2, and β2. Therefore

FIG. 4. (Color online) Multiple four-claw structures for the
second-order rogue waves with the parameters α1 = 0, β1 = −10:
(a) m = 0 and (b) m = 1. The setup is as in Fig. 3.

the third-order rogue wave displays a more complex structure
than the second-order wave. The choice of four parameters can
be made in many ways, but we consider the three special cases.
In the first case α1 = α2 = β1 = β2 = 0, which describes the
fundamental third-order rogue wave. The remaining two cases
are given by β1 = β2 = 0, and α1 �= 0, α2 �= 0 and by α1 =
α2 = 0, and β1 �= 0, β2 �= 0. In general, we find that many
different profiles of rogue waves can be obtained by different
combinations of these four parameters.

First, we construct the fundamental third-order rogue wave
for α1 = α2 = β1 = β2 = 0. For m = 0 there exist two valleys
and a high peak surrounded by six small claws, as seen in
Fig. 5(a). Note that the peak is located at the origin (z,x) =
(0,0). Figure 5(b) illustrates the rogue wave for m = 2. There
now exist three “six-claw” patterns, and the intensity is smaller
at the central peak than at the two side peaks.

Next, we consider the parameters β1 = β2 = 0, α1 =
α2 = 50, and m = 0. Figure 6(a) exhibits the second-order

FIG. 5. (Color online) Intensity of the fundamental third-order
rogue waves: (a) m = 0 and (b) m = 2. The setup is as in Fig. 3.
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FIG. 6. (Color online) General third-order rogue waves with the
parameters β1 = β2 = 0 and α1 = α2 = 50: (a) m = 0 and (b) m = 1.
The setup is as in Fig. 5.

rogue wave with six high peaks. If a larger parameter m is
selected, the structure of the rogue wave is significantly more
complicated, as shown in Fig. 6(b) for m = 1.

Finally, we choose four parameters: α1 = 0, α2 = 0, β1 =
1, and β2 = 5000. To display the characteristics of this peculiar
third-order solution of Eq. (7), the evolution of the rogue wave
is plotted in Fig. 7. Complicated patterns are obtained.

E. Numerical simulation

In the end, we briefly test the stability of the rogue wave
solutions found above. We take the fundamental third-order
rogue wave solution (7) as an initial wave perturbed by a
random noise to perform numerical simulation of Eq. (1) with
a special external potential parameter a = −1

/
4. The simu-

lations should also confirm the validity of analytical solutions

FIG. 7. (Color online) Intensities of the third-order solution of
Eq. (7) with the parameters α1 = 0, α2 = 0, β1 = 1, and β2 = 5000:
(a) m = 0 and (b) m = 1. The setup is as in Fig. 5.

FIG. 8. (Color online) Comparison of the analytical solution with
the numerical simulations for the fundamental third-order rogue
waves at z = 80: (a) analytical solution of Eq. (7) and (b) numerical
simulation of Eq. (1).

(7) by comparing them to their numerical counterparts. In
order to do so, we add white noise to the initial pulse u (0,x)
in the amount of 5% amplitude random noise so that the per-
turbed pulse is written as upert = u (0,x) [1 + 0.05random(x)].
Figure 8 compares the analytical solution of Eq. (7) with the
numerical simulation of Eq. (1) for α1 = β1 = 0 by using the
split-step beam-propagation method [34–36]. Here, we keep
the same parameters as in Fig. 5, but the parabolic-cylinder
order is chosen as m = 1. As expected, the rogue wave can
propagate in a stable manner for a while under the initial
perturbation of white noise and is in good agreement with the
analytical solution. Although here we have demonstrated the
results of the stability only for an example in Eq. (1), similar
conclusions hold for other solution cases as well, provided
propagation distances are kept within reasonable values. One
should keep in mind that rogue waves riding on a finite
background often suffer from modulational instabilities.

IV. CONCLUSIONS

In conclusion, we have presented analytical rogue wave
solutions of the generalized NLSE with spatially modulated
coefficients and a special external potential. By utilizing
the similarity transformation, we have demonstrated that a
class of parabolic-cylinder optical rogue waves can exist in
specific inhomogeneous media. Our results show that these
controllable patterns of the optical rogue waves can be realized
by selecting different orders of the parabolic-cylinder function
and of the basic rogue wave solutions of NLSE with constant
coefficients. A numerical simulation is performed to compare
with the analytical solution and to confirm the relative stability
of localized solutions. Since the understanding of rogue
waves is important in the (2+1)-dimensional models, which
characterize the more realistic evolution in the transverse (x,
y) plane, we plan to extend our study to multidimensional
NLSE models.
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APPENDIX A: EXACT ROGUE WAVE SOLUTIONS

We use the direct integration method to obtain rogue wave
solutions of Eq. (3). To find the first-order rogue wave solution,
we assume the solution of Eq. (3) in the form

V1(z,Y ) =
[
−1 + G1(z,Y ) + iH1(z,Y )

F1(z,Y )

]
e2iz, (A1)

with G1(z,Y ) = g0, H1(z,Y ) = h0 + h1z + h2Y, F1(z,Y ) =
f0 + f1z

2 + f2Y
2, where gj , hj , and fj (j = 0,1,2) are real

constants and the factor e2iz is a seed solution of Eq. (3).
Substituting Eq. (A1) into Eq. (3) and setting all coefficients
of zkY j (k,j � 0) to zero, for fj �= 0 to avoid singularities in
F1, we obtain a system of algebraic equations, which are then
solved, to obtain g0 = 1, h0 = 0, h1 = 4, h2 = 0, f0 = 1/4,
f1 = 4, f2 = 1, namely,

G1(z,Y ) = 1, H1(z,Y ) = 4z, F1(z,Y ) = 1
4 + 4z2 + Y 2.

We further apply the direct method to find the second-order
rogue wave solution as follows:

V2(z,Y ) =
[

1 + G2(z,Y ) + iH2(z,Y )

F2(z,Y )

]
e2iz, (A2)

with

G2(z,Y ) = g0 + g1z + g2zY + g3Y + g4z
2 + g5z

2Y 2 + g6Y
2 + g7z

4 + g8Y
4,

H2(z,Y ) = h0 + h1z + h2Y + h3z
2 + h4zY + h5Y

2 + h6z
5 + h7z

3 + h8zY
2 + h9z

3Y 2 + h10zY
2 + h11zY

4,

F2(z,Y ) = f0 + f1z + f2Y + f3z
2 + f4Y

2 + f5z
3 + f6zY

2 + f7z
2Y + f8Y

3 + f9z
4 + f10z

2Y 2 + f11Y
4

+ f12z
6 + f13z

2Y 4 + f14z
4Y 2 + f15Y

6.

Again, substituting Eq. (A2) into Eq. (3) and using Mathematica, we obtain the following relations:

g0 = 36, g1 = −115β1, g2 = 0, g3 = −576α1, g4 = −3456, g5 = −4608, g6 = −288,

g7 = −15360, g8 = −192;

h0 = 144β1, h1 = 720, h2 = 0, h3 = −2304β1, h4 = −2304α1, h5 = 576β1, h6 = −12288,

h7 = −1636, h8 = 1152, h9 = −6144, h10 = 1152, h11 = −768;

f0 = 9 + 144
(
α1

2 + β1
2
)
, f1 = 864β1, f2 = 144α1, f3 = 1584, f4 = 108, f5 = 1536β1,

f6 = −1152β1, f7 = 2304α1, f8 = −192α1, f9 = 6912, f10 = −1152, f11 = 48, f12 = 4096,

f13 = 768, f14 = 3072, f15 = 64;

where α1 and β1 are two arbitrary real constants. Thus, G2(z,Y ),H2(z,Y ), and F2(z,Y ) can be written as follows:

G2(z,Y ) = 36 − 115β1z − 576α1Y − 3456z2 − 4608z2Y 2 − 288Y 2 − 15 360z4 − 192Y 4,

H2(z,Y ) = 144β1 + 720z − 2304β1z
2 − 2304α1zY + 576β1Y

2 − 12 288z5 − 1636z3

+ 1152zY 2 − 6144z3Y 2 + 1152zY 2 − 768zY 4,

F2(z,Y ) = 9 + 144
(
α1

2 + β1
2
) + 864β1z + 144α1Y + 1584z2 + 108Y 2 + 1536β1z

3 − 1152β1zY
2

+ 2304α1z
2Y − 192α1Y

3 + 6912z4 − 1152z2Y 2 + 48Y 4 + 4096z6 + 768z2Y 4 + 3072z4Y 2 + 64Y 6.

In a similar procedure, we obtain the following third-order rogue wave solutions of Eq. (3):

V3(z,Y ) =
[
−1 + G3(z,Y ) + iH3(z,Y )

F3(z,Y )

]
e2iz. (A3)

The expressions for G3, H3, and F3 are given as follows:

G3(z,Y ) = 16200 + 3600
(
α2

1 + β2
1

) + 144
(
α2

2 + β2
2

) + G
(1)
3 (Y ) +

10∑
l=1

gl(Y )zl,

H3(z,Y ) = −16200β1 − 2400β1
(
α2

1 + β2
1

) + 960α1α2β1 − 1080β2 + 480β2
(
β2

1 − α2
1

) + H
(1)
3 (Y ) +

11∑
l=1

hl(Y )zl,

F3(z,Y ) = 2025 + 2700
(
α2

1 + β2
1

) + 400
(
α4

1 + β4
1

) + 360 (α1α2 + β1β2) + 36
(
α2

2 + β2
2

) + 800α2
1β

2
1

+F
(0)
3 + F

(1)
3 (Y ) +

12∑
l=1

fl(Y )zl,
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where

G
(1)
3 (Y ) = 24576Y 10 + 92160Y 8 + 322560Y 6 + (230400α1 − 13824α2) Y 5 + (

57600α2
1 − 19200β2

1 − 172800
)
Y 4

− (115200α1 + 11520α2)Y 3 − (
64800 + 28800α2

1 + 28800β2
1

)
Y 2 − (

43200α1 + 9600α3
1 + 4320α2 + 9600α1β

2
1

)
Y,

g10(Y ) = 276824064, g9(Y ) = 0, g8(Y ) = 283115520Y 2 + 778567680, g7(Y ) = −47185920β1,

g6(Y ) = 110100480Y 4 + 165150720Y 2 + 55050240α1Y + 215285760,

g5(Y ) = −29491200β1 − 1032192β2,

g4(Y ) = 19660800Y 6 − 14745600Y 4 + 19660800α1Y
3 + 165888000Y 2 + (1843200α2 − 25804800α1) Y

− 47001600 + 2150400α2
1 + 921600β2

1 ,

g3(Y ) = 4915200β1Y
4 + (1105920β2 − 36864000β1) Y 2 + 2457600α1β1Y + 10137600β1 − 645120β2,

g2(Y ) = 1474560Y 8 − 1474560Y 6 + 1474560α1Y
5 + 2764800Y 4 + (9216000α1 − 184320α2) Y 3

+ (
1382400β2

1 − 460800α2
1 − 20736000

)
Y 2

+ (414720α2 − 2764800α1) Y − 345600α2
1 + 46080α1α2 − 806400β2

1 + 46080β1β2 − 777600,

g1(Y ) = 491520β1Y
6 + 46080β2zY

4 − 614400α1β1Y
3 + (1382400β1 + 69120β2) Y 2

+ (23040α1β2 − 23040α2β1 + 230400α1β2)Y + 19200α2
1β1 + 19200β3

1 − 8640β2,

H
(1)
3 (Y ) = 30720β1Y

8 + (92160β1 − 7680β2) Y 6 + 30720α1β1Y
5 + (57600β1 − 5760β2) Y 4

+ (38400α1β1 − 3840α2β1 + 3840α1β2) Y 3 − (
86400β1 + 9600β1α

2
1 + 9600β3

1 + 12960β2
)
Y 2

+ 2880α2β1Y − 2880α1β2Y,

h11(Y ) = 100663296, h10(Y ) = 0, h9(Y ) = 125829120Y 2 + 157286400, h8(Y ) = −23592960β1,

h7(Y ) = 62914560Y 4 − 94371840Y 2 + 31457280α1Y − 342097920, h6(Y ) = 3932160β1 − 688128β2,

h5(Y ) = 15728640Y 6 + 82575360Y 4 + 15728640α1Y
3 + 168099840Y 2 + (1474560α2 − 56033280α1) Y

+ 1720320α2
1 + 737280β2

1 − 236666880,

h4(Y ) = 4915200β1Y
4 + (1105920β2 − 51609600β1) Y 2 + 2457600α1β1Y + 35942400β1 − 460800β2,

h3(Y ) = 1966080Y 8 − 13762560Y 6 + 1966080α1Y
5 − 11059200Y 4 + (12288000α1 − 245760α2) Y 3

+ (
1843200β2

1 − 38707200 − 614400α2
1

)
Y 2 + (184320α2 − 7372800α1) Y − 1382400α2

1 + 61440α1α2

−1996800β2
1 + 61440β1β2 − 3801600,

h2(Y ) = 983040β1Y
6 + 92160β2Y

4 − 1228800α1β1Y
3 + (2764800β1 − 138240β2) Y 2 + (460800α1β1 − 46080α2β1

+ 46080α1β2)Y + 38400β1α
2
1 + 38400β3

1 + 190080β2,

h1(Y ) = 98304Y 10 − 368640Y 8 − 921600Y 6 + 184320α1Y
5 − 55296α2Y

5 + (
230400α2

1 − 76800β2
1 − 2073600

)
Y 4

+ (46080α2 − 1382400α1) Y 3 + (
115200α2

1 + 115200β2
1 + 1814400

)
Y 2 − (

172800α1 + 38400α3
1 + 86400α2

+ 38400α1β
2
1

)
Y + 72000α2

1 − 23040α1α2 + 576α2
2 + 72000β2

1 − 23040β1β2 + 576β2
2 + 453600,

F
(1)
3 (Y ) = 4096Y 12 + 6144Y 10 − 10240α1Y

9 + 34560Y 8 + (1536α2 − 15360α1) Y 7 + (
8960β2

1 + 3840α2
1 + 149760

)
Y 6

+ (69120α1 − 3456α2) Y 5 + (
33600α2

1 − 1920α1α2 + 14400β2
1 − 1920β1β2 + 54000

)
Y 4 + (3200α1β

2
1 − 14400α1

+ 3200α3
1 − 4320α2)Y 3 + (

144β2
2 + 3600α2

1 − 28800α1α2 + 144α2
2 + 3600β2

1 − 2880β1β2 + 48600
)
Y 2

+ (
16200α1 + 2400α3

1 + 1080α2 − 480α2
1α2 + 2400α1β

2
1 + 480α2β

2
1 − 960α1β1β2

)
Y,

F
(0)
3 = −55115529584640β1 + 35055206400β1α

2
1 − 491520000α4

1β1 − 4600627200α1α2β1 + 196608000α3
1α2β1

+ 1730740224000β3
1 − 6881280000α2

1β
3
1 + 196608000α1α2β

3
1 − 6389760000β1 + 317973921792β2

− 66355200α2
1β2 + 265420800α1α2β2 − 54632448000β2

1β2

+ 196608000α2
1β

2
1β2 + 196608000β4

1β2 + 265420800β1β
2
2 ,

f12(Y ) = 16777216, f11(Y ) = 0, f10(Y ) = 25165824Y 2 + 132120576, f9(Y ) = −5242880β1,
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f8(Y ) = 15728640Y 4 + 70778880Y 2 + 7864320α1Y + 244776960, f7(Y ) = 0,

f6(Y ) = 5242880Y 6 + 3932160Y 4 + 5242880α1Y
3 + 221184000Y 2 + (491520α2 − 2949120α1) Y

+573440α2
1 + 245760β2

1 + 62668800,

f5(Y ) = 1966080β1Y
4 + (442368β2 − 26542080β1) Y 2 + 983040α1β1Y + 7004160β1 − 626688β2,

f4(Y ) = 983040Y 8 − 2949120Y 6 + 983040α1Y
5 − 5529600Y 4 + (15974400α1 − 122880α2) Y 3

+ (
921600β2

1 − 307200α2
1 + 80179200

)
Y 2 + (829440α2 − 11059200α1) Y + 3840,

f3(Y ) = 655360β1Y
6 + (61440β2 + 2457600β1) Y 4 − 819200α1β1Y

3 + (276480β2 − 16588800β1)Y 2

+ (1536000α1β1 − 30720α2β1 + 30720α1β2)Y,

f2(Y ) = 98304Y 10 − 368640Y 8 + 552960Y 6 + (184320α1 − 55296α2) Y 5 + (
230400α2

1 − 76800β2
1 + 3456000

)
Y 4

+ (2304000α1 + 46080α2) Y 3 + (
1036800β2

1 + 115200α2
1 − 2332800

)
Y 2 + (

190080α2 − 172800α1 − 38400α3
1

− 38400α1β
2
1

)
Y + 302400α2

1 − 23040α1α2 + 576β2
2 + 576α2

2 + 532800β2
1 − 23040β1β2 + 1490400,

f1(Y ) = 61440β1Y
8+ (61440β1 − 15360β2) Y 6+ (34560β2 − 284160α1β1) Y 4 + (7680α1β2 − 7680α2β1 − 230400α1β1) Y 3

+ (
172800β1 − 19200α2

1β1 − 19200β3
1 + 43200β2

)
Y 2 + (17280α1β2 − 17280α2β1) Y

− 118800β1 − 24000β1α
2
1 + 1920α1α2β1 − 24000β3

1 − 10800β2 − 960α2
1β2 + 960β2

1β2.

It should be emphasized that the first-order rogue wave solution has no free parameters, the second-order rogue wave solution
has a pair of free parameters (two real numbers: α1 and β1), while the third-order rogue wave solution has two pairs of free
parameters (four real numbers: α1, β1, α2, and β2).

APPENDIX B: THE RELATION BETWEEN
PARABOLIC-CYLINDER AND CONFLUENT

HYPERGEOMETRIC FUNCTION

The parabolic-cylinder differential equation (PCDE) has
two standard forms:

d2y

dx2
−

(
1

4
x2 + �

)
y = 0, (B1)

d2y

dx2
+

(
1

4
x2 − �

)
y = 0. (B2)

For a general �, the even and odd solutions to (B1) and (B2)
are

y1(x) = e− 1
4 x2

1F1

(
1

2
� + 1

4
;

1

2
;

1

2
x2

)
, (B3)

y2(x) = xe− 1
4 x2

1F1

(
1

2
� + 3

4
;

3

2
;

1

2
x2

)
, (B4)

where 1F1 is a confluent hypergeometric function. When � =
m + 1

2 , from (B3) we easily find

Dm(x) = e− 1
4 x2

1F1

(
m + 1

2
;

1

2
;

1

2
x2

)
, (B5)

D−m−1(ix) = e
1
4 x2

1F1

(
−m

2
;

1

2
; −1

2
x2

)
, (B6)

both functions being real. Thus Eq. (6d) can be simplified as

A(x) =
√

1√
2πm!

[
c1e

− 1
4 x2

1F1

(
m + 1

2
;

1

2
;

1

2
x2

)

+ c2e
1
4 x2

1F1

(
−m

2
;

1

2
; −1

2
x2

) ]
.
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