Interactions of Aromatic Residues in Amyloids: A Survey of Protein Data Bank Crystallographic Data

${ }_{3}$ Ivana M. Stanković, ${ }^{\dagger}$ Dragana M. Božinovski, ${ }^{\ddagger}$ Edward N. Brothers, ${ }^{\S}$ Milivoj R. Belić, ${ }^{\S}$ Michael B. Hall, ${ }^{\|}$© 4 and Snežana D. Zarićć, ${ }^{*, \&}$ ©
$5{ }^{\dagger}$ Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
$6{ }^{\ddagger}$ Department of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
$7{ }^{\text {§ }}$ Science Program, Texas A\&M University at Qatar, Texas A\&M Engineering Building, Education City, Doha, Qatar
8 "Department of Chemistry, Texas A\&M University, College Station, Texas 77843-3255, United States

9 (S Supporting Information

Abstract

Aromatic-aromatic interactions have long been considered important in the selfassembly of amyloids. In spite of their importance, aromatic amino acids are not detected in every amyloid. In the present study, the occurrence and geometry of these interactions were analyzed for the amyloid structures found in the Protein Data Bank. The data confirm that aromatic amino acids are not crucial for amyloid fibril formation. In fact, aromatic-aliphatic interactions are more frequent than the aromatic-aromatic interactions. Aromatic-aliphatic interactions are present in higher numbers of structures and in certain amyloid sequences; they are more frequent than aromatic-aromatic interactions. An analysis of aromatic/aromatic interactions shows different interaction geometries in intrasheet and intersheet contacts; the intrasheet aromatic-aromatic interactions are mostly parallel and displaced, while intersheet interactions are not parallel. Thus, among the aromatic-aromatic interactions there are important edge-to-face attractions in addition to parallel stacking ones.

- INTRODUCTION

Amyloids are insoluble proteins of a cross- β structure found as deposits in many neurodegenerative diseases, such as Alzheimer's, Parkinson's, Creutzfeldt-Jakob's, Huntington's, or in type II diabetes. ${ }^{1-6}$ Because of their strong fibrillar nature, they can be found in normal tissues as well, like nails, spider webs, or silk. ${ }^{7}$ Amyloids have attracted great attention because of their perceived role in various diseases, unique architecture, and exceptional physical properties. ${ }^{6,8}$ Short polypeptides, with a minimum length of four amino acids, are self-assembled into β-sheets via backbone hydrogen bonds, and then several β sheets interact with each other via polypeptide side chains, to form long linear unbranched protofilaments with an axis nearly perpendicular to a polypeptide strand. ${ }^{9}$ Several protofilaments, the number being specific to the particular amyloid protein, form fibrils. ${ }^{10}$ All amyloid proteins, independent of their sequence, form similar structures, namely, the cross $-\beta$ structure which is made of parallel arrays of β-strands. These structures differ only in the intersheet spacing, which depends on the side chain size, and in the morphology of a fibril. ${ }^{10}$
Although they are not indispensable, the aromatic amino acids phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp) appear to be important in amyloid formation, kinetics, and thermodynamic stability. ${ }^{9,11-22}$ Aromatic amino acids are hydrophobic and have a high β-sheet propensity. These properties appear crucial in amyloid formation. Furthermore, aromatic amino acids possess an ability to engage in $\pi-\pi$
interactions and have a directing role in the kinetics of amyloid formation. ${ }^{9,10,12,14,15,23}$

Aromatic-aromatic interactions ($\mathrm{Ar} / \mathrm{Ar}$) generally give rise ${ }_{51}$ to three different types of geometries that differ by the angle ${ }_{52}$ between rings and offset values: edge-to-face/T-shaped, face-toface, and parallel displaced (offset stacked) interactions (Figure 1). Generally, the face-to-face orientation is rarely observed, as it leads to an unfavorable electrostatic repulsion between the two planar faces of the aromatic rings. The majority of interactions in the proteins in general fall into a T -shaped orientation. ${ }^{24-26}$

```
55 fl
``` 56 56
57 57
58 58
59

Edge-to-face or T-shaped

Face-to-face

Parallel displaced

Figure 1. Representation of the three aromatic-aromatic interaction types.

\footnotetext{
Received: July 25, 2017
Revised: October 19, 2017
Published: October 23, 2017
} ogen bonding between \(\beta\)-strands within the same \(\beta\)-sheet, 92 or by side chain interactions between different \(\beta\)-sheets, \({ }^{10}\) these two types of \(\mathrm{Ar} / \mathrm{Ar}\) interactions were distinguished as intrasheet 4 and intersheet (Figure 2). To the best of our knowledge, this is 5 the first systematic study of interactions of aromatic side chains 6 in all amyloid structures deposited in the PDB.

Figure 2. Example of intrasheet and intersheet contacts in an amyloid protein, PDB ID 2NNT.

\section*{- MATERIALS AND METHODS}

PDB Database. Amyloid protein three-dimensional (3D) 99 structures were searched in the \(\mathrm{PDB}^{31}\) and in the CSD. \({ }^{32}\) The 100 searching criterion for the CSD was any at least four residue long 101 acyclic polypeptide with a nearly \(\beta\)-sheet structure. Eight structures 102 were found, but with no proof of self-assembly in the published papers. 103 An amyloid PDB subdatabase was made by searching the PDB for an 104 amyloid precursor name in the case of natural amyloids, and for the 105 terms amyloidogenic, amyloid-related, and amyloid-like for synthetic
amyloids. Only the \(\beta\) secondary structures or coils were taken into 106 account. The details of the procedure for the database search have 107 been explained previously. \({ }^{33}\) There were 109 structures found in the 108 PDB that fit these criteria, resolved by X-ray crystallography, solid state 109 or solution NMR. Some NMR structures are multiframe with up to 20110 conformers, so total of 303 conformers were analyzed. There are 83111 different peptide sequences in the constructed database. The X-ray 112 structures have been translated and rotated in order to obtain full 113 crystal lattice and biological assembly defined in PDB files; after, 114 duplicate interactions and amino acids have been excluded. In order to 115 determine the occurrence and impact of aromatic rings, all interactions 116 of aromatic rings, both aromatic-aromatic (\(\mathrm{Ar} / \mathrm{Ar} \mathrm{)} \mathrm{and} \mathrm{aromatic-} \mathrm{117}\) nonaromatic (\(\mathrm{Ar} / \mathrm{nAr}\)), were analyzed in every one of these sequences. 118

Aromatic-Aromatic Interactions. All the combinations of 119 interactions between the three aromatic amino acids, Phe, Tyr, and 120 Trp, were taken into account. Histidine was not taken into 121 consideration because it can be charged and thus screen more delicate 122 \(\pi-\pi\) interaction. For Trp, we considered interactions of the six- 123 membered ring, while we did not consider interactions of the five- 124 membered ring. We determined the center-center distance between 125 the rings \((d)\), the angle between ring planes \(\left(P_{1} / P_{2}\right)\), the normal 126 distance between ring planes \((R)\), and the offset between ring centers 127 \((r)\), shown in Figure 3. The distance (\(R\)) represents the normal 128 f 3

Figure 3. Geometric parameters determined for each PDB amyloid structure: the center-center distance between rings \((d)\), the angle between ring planes \(\left(P_{1} / P_{2}\right)\), the normal distance between planes \((R)\), the offset between ring centers \((r)\).
distance of the center of one ring \((\Omega)\) to its projection onto the plane 129 of the other ring \(\left(\Omega_{p}\right)\). The horizontal displacement (offset) \(r 130\) represents the distance of the center of one ring \(\left(\Omega^{\prime}\right)\) to the projection 131 of the center of the other ring onto the plane of the first ring \(\left(\Omega_{p}\right)\). For 132 \(\left(P_{1} / P_{2}\right)\) angles other than zero, there are two alternative and unequal 133 pairs of \(R\) and \(r\); we have used the higher \(R\) and its corresponding \(r 134\) value, as in ref 26 . The distances between the \(\mathrm{C} \alpha\) atoms of two 135 interacting amino acids have been calculated as well. The scripts for 136 the search and for the PDB file parsing were written in Python 137 (http://www.python.org/) by using the MDAnalysis python library. \({ }^{34} 138\) Duplicate interactions have been recognized as having the same \(d 139\) distance and excluded.

Aromatic molecules can form other types of interactions as well, 141 such as \(\mathrm{C}-\mathrm{H} / \mathrm{O}\) and \(\mathrm{C}-\mathrm{H} / \pi\). A contact was considered \(\mathrm{C}-\mathrm{H} / \mathrm{O} 142\) interaction if the distance between a hydrogen atom from the \(\mathrm{C}-\mathrm{H} 143\) group of an amino acid and an oxygen atom from another amino acid 144 was less than \(2.9 \AA\) and the \(\mathrm{C}-\mathrm{H}-\mathrm{O}\) angle larger than \(110^{\circ} .{ }^{35,36}\) The 145 geometrical criteria for the \(\mathrm{C}-\mathrm{H} / \pi\) interaction were the distance 146 between the H atom and the center of phenyl ring is shorter than 3.5147 \(\AA\), the angle between the \(\mathrm{C}-\mathrm{H}\) vector and the phenyl ring center is in 148 the range \(110-180^{\circ}\), and the angle between the vector H atom- 149 center of the ring and the vector normal to the ring is smaller than 150 \(30^{\circ}\). \({ }^{37}\)

We also distinguished \(\mathrm{Ar} / \mathrm{Ar}\) interactions when the aromatic rings 152 pertain to parallel and antiparallel strand, by defining angle between 153 vectors \(\mathrm{C}-\mathrm{C} \alpha\) for the two residues. When this vector was less than 154 \(90^{\circ}\), the strands were considered parallel.

Aromatic-Nonaromatic Interactions. To describe the Ar/nAr 156 interactions, the minimum distance between heavy atoms of two 157 interacting amino acids was calculated, taking into consideration side 158 chains only. The backbone interactions were not considered, as they 159

Table 1. Number and Percentages of Aromatic Amino Acids in Amyloid Sequences and Structures, and Their Involvement in Aromatic-Aromatic or Aromatic-Nonaromatic Interactions \({ }^{a}\)

\({ }^{a} \mathrm{Ar} / \mathrm{Ar}=\) aromatic-aromatic interactions, \(\mathrm{Ar} / \mathrm{nAr}=\) aromatic-nonaromatic interactions. There are 83 sequences and 109 structures in total.
Table 2. Number and Percentages of Structures and Interactions Involving Aromatic Amino Acids \({ }^{a}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{4}{|c|}{no. structures} & \multicolumn{4}{|c|}{no. interactions} \\
\hline & & \multicolumn{2}{|c|}{intersheet} & \multicolumn{2}{|c|}{intrasheet} & \multicolumn{2}{|c|}{intersheet} & \multicolumn{2}{|c|}{intrasheet} \\
\hline \multirow[t]{6}{*}{\(\mathrm{Ar} / \mathrm{Ar}\)} & PhePhe & 7 & 6.4\% & 21 & 19.3\% & 10 & 2.4\% & 1492 & 64.6\% \\
\hline & PheTyr & 2 & 1.8\% & 0 & 0.0\% & 3 & 0.7\% & 0 & 0.0\% \\
\hline & PheTrp & 0 & 0.0\% & 1 & 0.9\% & 0 & 0.0\% & 4 & 0.2\% \\
\hline & TyrTyr & 14 & 12.8\% & 15 & 13.8\% & 397 & 96.8\% & 797 & 34.5\% \\
\hline & TrpTrp & 0 & 0.0\% & 1 & 0.9\% & 0 & 0.0\% & 16 & 0.7\% \\
\hline & total & 21 & 19.3\% & 33 & 30.3\% & \multicolumn{2}{|c|}{410} & \multicolumn{2}{|c|}{2309} \\
\hline \multirow[t]{4}{*}{\(\mathrm{Ar} / \mathrm{nAr}\)} & Phe & 48 & 44.0\% & 33 & 30.3\% & 6902 & 72.4\% & 877 & 43.6\% \\
\hline & Tyr & 48 & 44.0\% & 31 & 28.4\% & 1827 & 19.2\% & 963 & 47.9\% \\
\hline & Trp & 4 & 3.7\% & 5 & 4.6\% & 810 & 8.5\% & 170 & 8.5\% \\
\hline & total & 78 & 71.6\% & 51 & 46.8\% & \multicolumn{2}{|c|}{9539} & \multicolumn{2}{|c|}{2010} \\
\hline
\end{tabular}
\({ }^{a} \mathrm{Ar} / \mathrm{Ar}=\) aromatic-aromatic interactions, \(\mathrm{Ar} / \mathrm{nAr}=\) aromatic - nonaromatic interactions. Total number of structures is 109,78 of which contain aromatic amino acids.

160 are not specific to an amino acid. The minimum distance between 161 heavy atoms was limited to \(5.0 \AA\) in the search, as the sum of van der 162 Waals radii never exceeds this value, according to the CHARMM 163 parameters. \({ }^{38}\) The interactions were discriminated as intersheet with 164 the \(\mathrm{C} \alpha-\mathrm{C} \alpha\) distance \(>8 \AA\), and intrasheet with \(\mathrm{C} \alpha-\mathrm{C} \alpha\) distance \(<6\) \(165 \AA\), according to the results for the \(\mathrm{Ar} / \mathrm{Ar}\). One interaction was counted 166 as one pair of residues.
167 Number of Rings Involved in Interactions. The number of 168 aromatic amino acids taking part in \(\mathrm{Ar} / \mathrm{Ar}\) or exclusively \(\mathrm{Ar} / \mathrm{nAr}\) 169 interactions was determined in every amyloid structure. \(\mathrm{An} \mathrm{Ar} / \mathrm{Ar}\) 170 interaction was defined within the area that corresponds to the ellipse \(171(r=7.0 \AA\) and \(R=6.0 \AA)\) according to the results for the \(\mathrm{Ar} / \mathrm{Ar}\) search. \(172 \mathrm{Ar} / \mathrm{nAr}\) interactions were defined as maximum heavy atom-heavy 173 atom distance up to \(5.0 \AA\), according to the \(\mathrm{Ar} / \mathrm{nAr}\) search.
- RESULTS AND DISCUSSION

175 We searched and analyzed interactions of aromatic side chains 176 in the subdatabase formed by amyloid structures deposited in 177 the PDB from June 2016. In the PDB, 83 sequences and 109

Figure 4. Normal distance \((R)\) dependence on the offset values \((r)\).

Figure 5. Example of the most frequent geometrical arrangement of the intrasheet interactions. PDBid: 4R0P, \(P_{1} / P_{2}=0.0^{\circ}, r=3.57 \AA\).
amyloid structures were found, while \(67.5 \%\) sequences and 178 \(71.6 \%\) structures contain aromatic amino acids (Table 1). 179 tl These data show that amyloid structures can exist without 180 aromatic amino acids, as was observed previously. \({ }^{9}\) Moreover, 181 in a number of structures with aromatic amino acids, the \(\mathrm{Ar} / \mathrm{Ar} 182\) interactions do not exist; among 109 structures, the \(\mathrm{Ar} / \mathrm{Ar} 183\) interactions were observed only in 48 structures, and 184 specifically intesheet \(\mathrm{Ar} / \mathrm{Ar}\) interactions are present only in 185 21 structures (19.3\%, Table 2). Hence, our data confirm that 186 t 2 neither aromatic amino acids nor \(\mathrm{Ar} / \mathrm{Ar}\) interactions are crucial 187 for amyloid existence.

The analysis has been done separately for the amino acids 189 Phe, Tyr, and Trp, in order to detect different substituents 190 influences. The occurrence of aromatic amino acids among all 191 amino acids in amyloids is \(3.92 \%\) for Phe, \(2.90 \%\) for Tyr and 192 \(0.29 \%\) for Trp, which is very similar to the occurrences in 193 general protein sequences taken from Uniprot, \({ }^{39}\) for Phe and 194 Tyr (3.93\% and 2.94\%, respectively), while occurrence for Trp 195 is larger in general protein sequence, \(1.29 \%\).

As was mentioned above, the intersheet and intrasheet 197 interactions were analyzed separately. The intrasheet \(\mathrm{Ar} / \mathrm{Ar} 198\) interactions are far more frequent than the intersheet ones 199 (2309 over 410, Table 2), and also a higher number of rings is 200

Figure 6. Geometrical parameters for the intrasheet aromatic-aromatic interactions: (A) Distribution of the offset values (\(r\)), (B) distribution of the normal distances \((R)\), (C) center-center distance distribution, (D) distribution of the angle between aromatic rings, and (E) distribution of the C \(\alpha-\) \(\mathrm{C} \alpha\) distances.

Figure 7. Torsion angle \(T\) of an aromatic amino acid between the atoms \(\mathrm{C}, \mathrm{C} \alpha, \mathrm{C} \beta\), and \(\mathrm{C} \gamma\).

201 involved in the intrasheet interactions (4028 over 902, Table 202 1).
203 Considering intersheet interactions, the data in Table 1 show 204 that the number of aromatic amino acids involved in \(\mathrm{Ar} / \mathrm{nAr}\)
interactions (3646) is larger than the number of aromatic 205 amino acids involved in \(\mathrm{Ar} / \mathrm{Ar}\) interactions (902). Also, the 206 number of \(\mathrm{Ar} / \mathrm{nAr}\) interactions (9539) is larger than the 207 number of \(\mathrm{Ar} / \mathrm{Ar}\) interactions (410), as data in Table 2 indicate. 208 On the other hand, for the intrasheet interactions, the \(\mathrm{Ar} / \mathrm{Ar} 209\) (2309) are more preferred than the \(\mathrm{Ar} / \mathrm{nAr}\) ones (2010, Table 210 2), and also a higher number of rings is involved in \(\mathrm{Ar} / \mathrm{Ar}_{211}\) (4028) than in \(\mathrm{Ar} / \mathrm{nAr}(879\), Table 1).

Aromatic-Aromatic Interactions. The common charac- 213 teristic of all the \(\mathrm{Ar} / \mathrm{Ar}\) interactions found in amyloid PDB 214 structures is that the normal distance between rings (\(R)_{215}\) decreases as the offset value increases \((r)\), as seen in Figure 4. 216 f4 The database search yielded 3573 contacts found to be within 217

Figure 8. \(P_{1} / P_{2}\) angle-offset dependence for intrasheet aromaticaromatic interactions. Different amino acid pairs represented in various colors. (A) \(P_{1} / P_{2}\) (offset) function for all intrasheet interactions. (B) \(P_{1} / P_{2}\) (offset) function for intrasheet interactions not exposed to the solvent.

Figure 9. Intrasheet aromatic-aromatic interactions. (A) Type PhePhe exhibits higher offset values (right), PDB ID 2LMQ, \(r=4.95 \AA\). (B) Type Tyr-Tyr exhibits lower offset values (right), PDB ID 2M5K, \(r=2.30 \AA\). Besides intraseet \(\pi-\pi\) interactions between aromatic rings, Phe and Tyr residues have additional interactions with the opposite amyloid sheet. Phenylalanines interact through their \(\pi\)-cloud with hydrophobic residues in the surrounding (Leu, \(\mathrm{C}-\mathrm{H} / \pi\) interaction), while tyrosines form hydrogen bonds with the opposite sheet backbone through their -OH group, \(\mathrm{O}-\mathrm{H}-\mathrm{O}\) angle \(155.24^{\circ}, \mathrm{O}-\mathrm{O}\) distance 3.41 Å.

218 the area that corresponds to the ellipse \((r=7.0 \AA\) and \(R=6.0\) \(219 \AA\)).
220 Some longer amyloid peptides exhibit the structure of a \(\beta\) 221 turn \(-\beta\) and look like U -shaped \(\beta\)-sheets. The aromatic rings 222 contained in these unstructured turns, as well as in the
unstructured \(\beta\)-strand extremities, were not accounted for in 223 the interaction analysis, as they do not give rise to the cross- \(\beta 224\) amyloid structure (Figure S1). In other words, only the 225 interacting cross- \(\beta\) fragments were analyzed in this study, and 226 hence we analyzed 2719 interactions. The geometric 227 parameters were analyzed separately for the intersheet and 228 the intrasheet \(\mathrm{Ar} / \mathrm{Ar}\) interactions.

Intrasheet Aromatic-Aromatic Interactions. When it 230 comes to the intrasheet arrangements, more than two aromatic 231 rings are stacked, and the rings are arranged in a nearly parallel 232 orientation, with varying offset values. The structure in Figure 5233 fs represents one typical example of these structural motifs. The 234 data on geometries of these interactions are given in Figure 6, \(235 \mathrm{f6}\) where the characteristic angles between ring planes, \(P_{1} / P_{2}\), are 236 \(0-5^{\circ}\) and the offset values \((r)\) are in the range \(2.5-5.0 \AA\). The 237 \(\mathrm{C} \alpha-\mathrm{C} \alpha\) distance is in a small range, since it corresponds to the 238 intrasheet distances and is a general property of proteins, about 239 \(\sim 4.7 \AA \AA^{10}\) As the distance between two amino acids is constant, 240 the variation in the center-center distance between rings (d) 241 and in the offset value \((r)\) (Figure 6) is due to the change in the 242 torsion angle \(\mathrm{C}-\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{C} \gamma\), presented in Figure 7.

In order to probe the influence of the ring type, the \(P_{1} / P_{2} 244\) angle-offset dependence was separately shown for the four 245 systems, Phe-Phe, Phe-Trp, Tyr-Tyr, and Trp-Trp, which 246 were found in the interactions involving combinations of three 247 aromatic amino acids (Figure 8A). All systems, except Trp- 248 f8 Trp, show a tendency toward parallel interactions, and a large 249 range of offset values. The systems with tryptophan exhibit less 250 parallel geometries, which could be the consequence of a small 251 number of these interactions (Table 2). Namely, all the Trp- 252 Trp interactions were found in one 10-framed NMR structure, 253 and all tryptophans were positioned toward the water 254 environment with higher conformational freedom (Figure S2). 255

In the polar solvent environment, the dielectric constant is 256 higher than in the hydrophobic core of proteins, and the polar 257 interactions screen the delicate \(\pi-\pi\) interactions. Hence, Figure 258 8B presents the \(P_{1} / P_{2}\) angle-offset dependence when all 259 intrasheet interactions with aromatic rings that are close to 260 the water environment are excluded. The comparison of data in 261 Figure \(8 \mathrm{~A}, \mathrm{~B}\) shows that the interactions in the polar solvent 262 environment have high \(P_{1} / P_{2}\) angles and can have high offset 263 values. The interactions in the hydrophobic core show 264 tendencies toward smaller \(P_{1} / P_{2}\) angles (Figure 8B). One can 265 notice that only Phe-Phe and Tyr-Tyr interactions occur in 266 the hydrophobic core.

In comparison to tyrosine aromatic rings, the phenylalanine 268 rings demonstrate a higher tendency to form intrasheet \(\mathrm{Ar} / \mathrm{Ar} 269\) interactions with a larger range of offset values and large range 270 of inter-ring angles (Figure 8 B). Visual inspection of the 271 amyloid structures indicated that Phe rings are found nearly 272 parallel to the sheet plane, while the Tyr rings point toward the 273 opposite amyloid sheet, as presented in the examples in Figure 274 f9 9. Tyr possesses the -OH group and can form hydrogen bonds 275 f9 with the opposite sheet backbone (Figure 9B); this is the 276 reason why offset values for \(\mathrm{Tyr}-\mathrm{Tyr}\) interactions are in a 277 relatively small range, and they have a small angle \(P_{1} / P_{1}\) (almost 278 parallel interactions, Figure 8). Hence, hydrogen bonds of 279 -OH group of tyrosine with the opposite backbone are 280 responsible for different geometries in Phe-Phe and Tyr-Tyr 281 contacts.

282
Phenylalanine residues that form interactions at large offsets 283 (3.5-5.0 \(\AA\)) can form simultaneous interactions with ring faces. 284 It was previously demonstrated that high offsets in phenyl- 285

Table 3. Number and Percentages of Intersheet and Intrasheet Aromatic-Nonaromatic Interactions between Different Aromatic and Nonaromatic Residues \({ }^{a}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{intersheet \(\mathrm{Ar} / \mathrm{nAr}\)} & \multicolumn{7}{|c|}{intrasheet \(\mathrm{Ar} / \mathrm{nAr}\)} \\
\hline & \multicolumn{2}{|c|}{Phe} & \multicolumn{2}{|c|}{Tyr} & \multicolumn{2}{|c|}{Trp} & & \multicolumn{2}{|c|}{Phe} & \multicolumn{2}{|c|}{Tyr} & \multicolumn{2}{|c|}{Trp} \\
\hline Leu & 2018 & 21.2\% & 154 & 1.6\% & 185 & 1.9\% & Val & 266 & 13.2\% & 314 & 15.6\% & 0 & 0.0\% \\
\hline Ile & 1556 & 16.3\% & 450 & 4.7\% & 0 & 0.0\% & Ser & 32 & 1.6\% & 338 & 16.8\% & 0 & 0.0\% \\
\hline Val & 759 & 8.0\% & 300 & 3.1\% & 33 & 0.3\% & Glu & 218 & 10.8\% & 128 & 6.4\% & 0 & 0.0\% \\
\hline Ala & 757 & 7.9\% & 77 & 0.8\% & 0 & 0.0\% & Asp & 48 & 2.4\% & 9 & 0.4\% & 116 & 5.8\% \\
\hline Glu & 585 & 6.1\% & 105 & 1.1\% & 126 & 1.3\% & Leu & 155 & 7.7\% & 17 & 0.8\% & 0 & 0.0\% \\
\hline Asn & 599 & 6.3\% & 173 & 1.8\% & 11 & 0.1\% & Ala & 83 & 4.1\% & 61 & 3.0\% & 1 & 0.0\% \\
\hline Arg & 174 & 1.8\% & 20 & 0.2\% & 294 & 3.1\% & Thr & 6 & 0.3\% & 39 & 1.9\% & 21 & 1.0\% \\
\hline
\end{tabular}
\({ }^{a}\) The most frequent interactions are represented. Total number of the interactions is 9539 for the intersheet and 2010 for the intrasheet interactions.

Figure 10. (A) Antiparallel beta-sheet arrangement prevents the intrasheet aromatic-aromatic interactions, PDB ID 3MD4, and (B) parallel arrangement results in the intrasheet interactions, PDB ID 2BEG. Dashed lines represent the backbone hydrogen bonds, and red sticks represent the aromatic amino acids.
phenyl interactions are favorable in supramolecular structures, since the \(\pi\)-cloud can simultaneously interact with other entities in the vicinity. \({ }^{26,27}\) In amyloids, the simultaneous interactions of the Phe ring are interactions with nonaromatic residues; the most frequent are interactions with the leucine side chain (Table 3).
In the example shown in Figure 9A, the Phe ring forms a parallel interaction with another Phe ring at a large offset and simultaneously interacts with leucine (Figure 9A). In strands with Tyr, the Tyr protrudes between the side chains of the opposite sheet, due to its side chain forming hydrogen bond with the opposite sheet (Figure 9B). This Tyr arrangement contributes to the relatively small range of offset values for \(\mathrm{Tyr}-\mathrm{Tyr}\) interactions (Figure 8).
In contrast to the intersheet interactions (see below) the intrasheet aromatic contacts do not involve \(\mathrm{C}-\mathrm{H} / \mathrm{O}\) and \(\mathrm{C}-\) \(\mathrm{H} / \pi\) interactions, as there is no geometric condition for these interactions. Namely, \(\mathrm{C}-\mathrm{H} / \pi\) are impossible with small interring angles (Figure 8), while the \(\mathrm{C}-\mathrm{H} / \mathrm{O}\) interactions of Tyr (only Tyr possesses oxygen) are not possible for the small offsets observed in amyloid structures (Figure 8).
The interstrand hydrogen bonds of the backbone groups stabilize individual beta-sheets, and they are stronger than \(\pi-\pi\) interactions. \({ }^{10}\) Thus, the intrasheet \(\mathrm{Ar} / \mathrm{Ar}\) interactions are probably the consequence of the steric condition inside a
protein \(\beta\)-sheet, although interactions between aromatic rings 311 also contribute to the stabilization of a sheet. Examples in 312 Figure 10 show that the antiparallel beta-sheet arrangement 313 flo prevents the intrasheet \(\mathrm{Ar} / \mathrm{Ar}\) interactions, while the parallel 314 arrangement results in the intrasheet interactions. In the 315 structures where intrasheet interactions are present, they are 316 always arranged as an array of rings. This arrangement also 317 maximizes the intrasheet backbone hydrogen bonds between 318 the parallel \(\beta\)-strands, because the strands are always aligned 319 along the entire length, Figure 10. Also, intrasheet \(\mathrm{Ar} / \mathrm{Ar} 320\) interactions are not formed in every parallel structure (in 10 out 321 of 36 structures interactions not formed), even when rings are 322 aligned, which indicates poor importance of the intrasheet \(\mathrm{Ar} / 323\) Ar interactions in amyloids.

Intersheet Aromatic-Aromatic Interactions. Histo- 325 grams with geometric data for intersheet \(\mathrm{Ar} / \mathrm{Ar}\) interactions 326 are given in Figure 11 and show significant differences between 327 fll the inter- and intrasheet interaction geometries (Figure 6). In 328 contrast to the case of intrasheet interactions, the intersheet 329 interactions have no parallel ring arrangements; the \(P_{1} / P_{2} 330\) angles for most of the interactions have values in the range 331 \(30-40^{\circ}\) (Figure 11). The histogram with offset values has two 332 sharp maxima, at \(2.5-3.0 \AA\) and \(5.5-6.5 \AA\) (Figure 11), while 333 the range of offset values for intrasheet interactions is \(2.5-5.0 \AA 334\) (Figure 6). The intersheet interactions exhibit a somewhat 335 larger distance (d) than the intrasheet interactions, and the \(\mathrm{C} \alpha-336\) \(\mathrm{C} \alpha\) distance is much larger, since the rings from different sheets 337 are pointed toward each other.

The intersheet interactions are mostly pairwise, in contrast to 339 the intrasheet interactions, where there are several rings stacked 340 subsequently. In order to probe the influence of aromatic ring 341 type the angle \(P_{1} / P_{2}\)-offset dependence was obtained 342 separately for Phe-Phe, Phe-Tyr, and Tyr-Tyr interactions, 343 the three types of the intersheet interactions that were found in 344 amyloid structures (Figure 12A). Like the intrasheet 345 f 12 interactions, the mixed-type interactions are not common; 346 however, in the intersheet interactions the Tyr-Tyr 347 interactions prevail, while in the intrasheet the majority of 348 interactions are Phe-Phe (Table 2).

The intersheet \(\mathrm{Ar} / \mathrm{Ar}\) interactions have values of geometric 350 parameters over a large range, indicating a variety of interaction 351 geometries. This could be the consequence of a higher ring 352 steric freedom, as amyloid sheets are not as close as the strands 353 inside a sheet. The interactions of two aromatic rings with 354 inter-ring angles around zero and with offsets up to \(2.0 \AA\) had 355 been considered as stacking interactions. Recently, Zarić and 356 co-workers found significantly strong benzene-benzene 357 interactions also at larger offsets, up to \(5.5 \AA \AA^{26,27}\) Furthermore, 358 the interactions with \(P_{1} / P_{2}\) angles up to \(40^{\circ}\) could be 359

Figure 11. Geometry parameters for the intersheet aromatic-aromatic interactions: (A) Distribution of the offset values (\(r\)), (B) distribution of the normal distances (R), (C) center-center distance distribution, (D) distribution of the angles between aromatic rings, and (E) distribution of the \(\mathrm{C} \alpha-\mathrm{C} \alpha\) distances.

360 considered stacking, as they exhibit an energy-offset depend361 ence like that in the parallel interactions. \({ }^{26}\)
Most of the intermolecular \(\mathrm{Ar} / \mathrm{Ar}\) interactions are displaced stackings (Figure 12B), although they can form other types of interactions as well, like \(\mathrm{C}-\mathrm{H} / \mathrm{O}^{36,37}\) and \(\mathrm{C}-\mathrm{H} / \pi .^{37}\) The number of \(\mathrm{C}-\mathrm{H} / \mathrm{O}\) interactions is 22 , and the number of \(\mathrm{C}-\) \(366 \mathrm{H} / \pi\) interactions is 31 (Figure 12B). The structures in Figure 36713 exemplify characteristic interactions between aromatic 8 moieties: stacking, displaced stacking, \(\mathrm{C}-\mathrm{H} / \mathrm{O}\) and \(\mathrm{C}-\mathrm{H} / \pi\) interactions.

The rest, namely, the 176 "other" interactions, do not satisfy 1 criteria for any of the interactions. However, they are all 2 attractive. The potential surface for \(\mathrm{Ar} / \mathrm{Ar}\) interactions \({ }^{20}\) shows
that the interactions at offsets around \(3.0 \AA\) with \(P_{1} / P_{2}\) angles 373 around \(50^{\circ}\) have interaction energies close to \(-2.0 \mathrm{kcal} / \mathrm{mol}, 374\) while the interactions at offsets around \(6.0 \AA\) with \(P_{1} / P_{2}\) angles 375 around \(30^{\circ}\) have interaction energies between -0.5 and -1.0376 \(\mathrm{kcal} / \mathrm{mol}\). The vast majority \((145 / 176)\) of these "other" 377 interactions belong to a single 20 -framed NMR structure, 378 PDB ID 2 M 5 N , as shown in Figure S3.

The geometrical parameters for the interacting rings 380 belonging to the parallel and antiparallel strands are very 381 similar (Figure 12C), indicating that orientation of strands does 382 not have a significant influence on the intersheet interactions. 383

Aromatic-Nonaromatic Interactions. The intrasheet 384 \(\mathrm{Ar} / \mathrm{nAr}\) interactions are long with no peak at lower heavy 385

Figure 12. (A) \(P_{1} / P_{2}\) angle-offset dependence for the intersheet aromatic-aromatic interactions. (B) Influence of the aromatic amino acid type. (C) Various types of interactions.

Figure 13. Representative structures of the intersheet interactions found in amyloids. (A) stacking: \(P_{1} / P_{2}=10.90^{\circ}, r=1.94 \AA\), PDBid 4OLR, (B) displaced stacking: \(P_{1} / P_{2}=33.78^{\circ}, r=3.02 \AA\), PDBid 2M5N, (C) \(\mathrm{C}-\mathrm{H} / \pi\) interactions: \(P_{1} / P_{2}=76.51^{\circ}, r=2.25 \AA\), PDBid 2NNT, (D) \(\mathrm{C}-\mathrm{H} / \mathrm{O}\) interaction: \(P_{1} / P_{2}=79.90^{\circ}, r=1.13 \AA\), PDBid 2NNT. The green dotted lines represent the putative interactions.

386 atom-heavy atom distances between two interacting amino 387 acids (Figure 14). Rings interact with various nonaromatic side 388 chains with no strong preference for any side chain (Table 3).

Figure 14. Histogram of minimum distances between heavy atoms of two amino acids in aromatic-nonaromatic interactions; (A) intrasheet (B) intersheet.

These intrasheet interactions could also be the result of steric 389 conditions. The number of the interactions show that the 390 intrasheet \(\mathrm{Ar} / \mathrm{nAr}\) interactions are not particularly important 391 (Table 1).

Differently than interacting distances of \(\mathrm{Ar} / \mathrm{nAr}\) intrasheet 393 interaction, the distances of intersheet interactions exhibit a 394 peak at 3.5-4.0 \(\AA\) (Figure 14B). As the nonaromatic residues 395 are much more numerous (in average, every aromatic ring 396 interacts with \(\sim 3\) nonaromatic, and \(\sim 1.5\) aromatic residues), we 397 performed an analysis of the number of rings taking part in 398 certain types of interactions: \(\mathrm{Ar} / \mathrm{Ar}\) or \(\mathrm{Ar} / \mathrm{nAr}\). Four times 399 higher number of aromatic rings takes part in the intersheet \(\mathrm{Ar} / 400\) nAr than in the \(\mathrm{Ar} / \mathrm{Ar}\) interactions (3646 over 902, Table 1). 401 The interaction energy of \(\mathrm{Ar} / \mathrm{nAr}\) interaction can be also 402 substantial, comparable or even stronger than the \(\mathrm{Ar} / \mathrm{Ar}\) ones, 403 as shown by the interactions energy calculations. \({ }^{28}\) Considering 404 particular amino acids, Phe has the highest preference toward 405 \(\mathrm{Ar} / \mathrm{nAr}\) interactions, while Tyr does not have large preference 406 for \(\mathrm{Ar} / \mathrm{nAr}\) interactions (Table 1).

The intersheet \(\mathrm{Ar} / \mathrm{nAr}\) interactions were found to involve 408 mostly aliphatic amino acids, especially Leu and Ile (24.7\% and 409 \(21.0 \%\), Table 3). An example of the interaction between Phe 410 and Leu is shown in Figure 9A.

Among the aromatic amino acids, phenylalanine was found 412 to be the most frequent in these contacts.

The greater impact of the intersheet \(\mathrm{Ar} / \mathrm{nAr}\) over \(\mathrm{Ar} / \mathrm{Ar}_{414}\) interactions confirms previous experimental findings that 415 aromatic amino acid properties other than aromaticity could 416 be more important for amyloids, such as hydrophobicity, low 417 chain flexibility, and \(\beta\)-sheet propensity. \({ }^{18,21,40}\)

\section*{- CONCLUSIONS}

By analyzing the aromatic-aromatic interactions in amyloids in the PDB, it was established that aromatic amino acids are not present in every amyloid sequence, and thus they are not essential for amyloid self-assembly. The aromatic-aromatic interactions in amyloids are less frequent than aromaticaliphatic interactions. In addition, the aromatic-aliphatic interactions are present in more structures than the aromatic-aromatic ones. Aromatic rings in amyloids tend much more to interact with nonaromatic residues, especially aliphatic ones, which is partially caused by a small number of aromatic and a high number of aliphatic amino acids in the amyloid sequences.
The aromatic-aromatic interactions between adjacent \(\beta\) strands within the same \(\beta\)-sheet of an amyloid protein structure are far more frequent than the intersheet interactions. Since the aromatic-aromatic interactions are predominantly of the intrasheet type, one can conclude that they play a less dominant role for the association of amyloid sheets.

For the intrasheet aromatic-aromatic interactions, a parallel displaced geometry is the most frequent, with the \(P_{1} / P_{2}\) interplanar angles of \(0-5^{\circ}\) and varying offset values in the range of \(2.5-5.0 \AA\). In the case of the intersheet interactions, there are no parallel ring arrangements. The most frequent are displaced rings with \(P_{1} / P_{2}\) interplanar angles between 30 and \(40^{\circ}\).

\section*{- ASSOCIATED CONTENT}

\section*{(S) Supporting Information}

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.cgd.7b01035.

Figure of an example of turn and coil aromatic amino acids in amyloids (Figure S1), figure of the structure with Trp-Trp intrasheet interactions (Figure S2), and figure of the 20 -framed NMR structure, PDBid 2M5N (Figure S3) (PDF)

\section*{- AUTHOR INFORMATION}

\section*{Corresponding Author}
*Phone: 011-3336605. E-mail: szaric@chem.bg.ac.rs.
ORCID
Michael B. Hall: 0000-0003-3263-3219
Snežana D. Zarić: 0000-0002-6067-2349
Notes
The authors declare no competing financial interest.

\section*{- ACKNOWLEDGMENTS}

This work was supported by an NPRP grant from the Qatar National Research Fund (a member of the Qatar Foundation) [Grant Number NPRP8-425-1-087]. I.M.S. is grateful to the Serbian Ministry of Education, Science and Technological Development [Grant Number 172065] for supporting this work.

\section*{- REFERENCES}
(1) Laurén, J.; Gimbel, D. A.; Nygaard, H. B.; Gilbert, J. W.; Strittmatter, S. M. Nature 2009, 457, 1128-1132.
(2) Haataja, L.; Gurlo, T.; Huang, C. J.; Butler, P. C. Endocr. Rev. 2008, 29, 303-316.
(3) Ferreira, S. T.; Vieira, M. N. N.; De Felice, F. G. IUBMB Life 2007, 59, 332-345.
(4) Irvine, G. B.; El-Agnaf, O. M.; Shankar, G. M.; Walsh, D. M. Mol. 476 Med. 2008, 14, 451-464.

477
(5) Murphy, M. P.; LeVine, H. J. Alzheimer's Dis. 2010, 19, 311-323. 478
(6) Pulawski, W.; Ghoshdastider, U.; Andrisano, V.; Filipek, S. Appl. 479 Biochem. Biotechnol. 2012, 166, 1626-1643.
(7) Slotta, U.; Hess, S.; Spiess, K.; Stromer, T.; Serpell, L.; Scheibel, 481
T. Macromol. Biosci. 2007, 7, 183-188.
(8) Li, C.; Mezzenga, R. Nanoscale 2013, 5, 6207-6218. 483
(9) Lakshmanan, A.; Cheong, D. W.; Accardo, A.; Di Fabrizio, E.; 484 Riekel, C.; Hauser, C. A. E. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 485 519-524.
(10) Harrison, R. S.; Sharpe, P. C.; Singh, Y.; Fairlie, D. P. Rev. 487 Physiol. Biochem. Pharmacol. 2007, 159, 1-77.
(11) Bowerman, C. J.; Liyanage, W.; Federation, A. J.; Nilsson, B. L. 489 Biomacromolecules 2011, 12, 2735-2745.
(12) Cukalevski, R.; Boland, B.; Frohm, B.; Thulin, E.; Walsh, D.; 491 Linse, S. ACS Chem. Neurosci. 2012, 3, 1008-1016. 492
(13) Doran, T. M.; Kamens, A. J.; Byrnes, N. K.; Nilsson, B. L. 493 Proteins: Struct., Funct., Genet. 2012, 80, 1053-1065. 494
(14) Milardi, D.; Sciacca, M. F. M.; Pappalardo, M.; Grasso, D. M.; 495 La Rosa, C. Eur. Biophys. J. 2011, 40, 1-12.
(15) Tu, L.-H.; Raleigh, D. P. Biochemistry 2013, 52, 333-342.
(16) Azriel, R.; Gazit, E. I. Biol. Chem. 2001, 276, 34156-34161,
(17) Görbitz, C. H. Chem. Commun. 2006, No. No. 22, 2332-2334. 499
(18) Lee, N. R.; Bowerman, C. J.; Nilsson, B. L. Biomacromolecules 500 2013, 14, 3267-3277.
(19) Qi, R.; Luo, Y.; Ma, B.; Nussinov, R.; Wei, G. Biomacromolecules 502 2014, 15, 122-131.
(20) Profit, A. A.; Vedad, J.; Saleh, M.; Desamero, R. Z. B. Arch. 504 Biochem. Biophys. 2015, 567, 46-58.
(21) Bemporad, F.; Taddei, N.; Stefani, M.; Chiti, F. Protein Sci. 506 2006, 15, 862-870.
(22) Profit, A. A.; Felsen, V.; Chinwong, J.; Mojica, E.-R. E.; 508 Desamero, R. Z. B. Proteins: Struct., Funct., Genet. 2013, 81, 690-703. 509
(23) Gazit, E. FASEB J. 2002, 16, 77-83. 510
(24) Anjana, R.; Vaishnavi, M. K.; Sherlin, D.; Kumar, S. P.; Naveen, 511 K.; Kanth, P. S.; Sekar, K. Bioinformation 2012, 8, 1220-1224. 512
(25) Chourasia, M.; Sastry, G. M.; Sastry, G. N. Int. J. Biol. Macromol. 513 2011, 48 (4), 540-552.
(26) Ninković, D. B.; Andrić, J. M.; Malkov, S. N.; Zarić, S. D. Phys. 515

Chem. Chem. Phys. 2014, 16, 11173-11177.
(27) Ninković, D. B.; Janjić, G. V.; Veljković, D. Ž.; Sredojević, D. N.; 517 Zaríc, S. D. ChemPhysChem 2011, 12, 3511-3514.
(28) Ninković, D. B.; Malenov, D. P.; Petrović, P. V.; Brothers, E. N.; 519 Niu, S.; Hall, M. B.; Belić, M. R.; Zaríć, S. D. Chem. - Eur. J. 2017, 23, 520 11046.
(29) Ninković, D. B.; Vojislavljević-Vasilev, D. Z.; Medaković, V. B.; 522 Hall, M. B.; Brothers, E. N.; Zaríc, S. D. Phys. Chem. Chem. Phys. 2016, 523 18, 25791-25795.
(30) Bowerman, C. J.; Ryan, D. M.; Nissan, D. A.; Nilsson, B. L. Mol. 525 BioSyst. 2009, 5, 1058-1069.
(31) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. 527 N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 528 2000, 28, 235-242.
(32) Allen, F. H. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 380-530 388.
(33) Stanković, I.; Hall, M. B.; Zarić, S. D. Trans. Internet Res. 2017, 532 13.
(34) Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, 534 O. J. Comput. Chem. 2011, 32, 2319-2327.
(35) Dragelj, J. L.; Stanković, I. M.; Božinovski, D. M.; Meyer, T.; 536 Veljković, D. Z.; Medaković, V. B.; Knapp, E. W.; Zarić, S. D. Cryst. 537 Growth Des. 2016, 16, 1948-1957.
(36) Veljković, D. Ž.; Janjić, G. V.; Zarić, S. D. CrystEngComm 2011, 539 13, 5005.

540
(37) Milčíć, M. K.; Medaković, V. B.; Sredojević, D. N.; Juranić, N. 541 O.; Zarić, S. D. Inorg. Chem. 2006, 45, 4755-4763.

542
(38) MacKerell, A. D. J.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; 543 Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; 544

545 Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, 546 C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; et al. J. Phys. Chem. B 1998, 547 102, 3586-3616.
548 (39) Apweiler, R.; Bairoch, A.; Wu, C. H.; Barker, W. C.; 549 Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; 550 Magrane, M.; Martin, M. J.; Natale, D. A.; O’Donovan, C.; Redaschi, 551 N.; Yeh, L.-S. L. Nucleic Acids Res. 2004, 32, 115D-119.
552 (40) Senguen, F. T.; Lee, N. R.; Gu, X.; Ryan, D. M.; Doran, T. M.; 553 Anderson, E. A.; Nilsson, B. L. Mol. BioSyst. 2011, 7, 486-496.```

