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a  b  s  t  r  a  c  t

This  paper  addresses  the  dynamics  of solitons  in  optical  metamaterials.  Both  bright  and  dark  soliton
solutions  are  obtained.  The  ansatz  method  of  integration  is employed  to  extract  the  1-soliton  solutions
to  the  governing  equations.  A couple  of  constraint  relations  are  obtained  in order  for  these  solitons  to
exist.  A  few  numerical  simulations  are also  given  to expose  the  dissipative  effects.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Electromagnetic properties of complex materials with simul-
taneous negative and real dielectric permittivity (�) and magnetic
permeability (�) have attracted a lot of attention in research [1–15].
Russian physicist Vaselago predicted that electromagnetic wave
propagation in these media should give rise to several peculiar
characteristics [14]. These media typically referred to as left-
handed (L-H) media possess interesting features that may lead
to unconventional phenomena in guidance, radiation and scatter-
ing of electromagnetic waves. Even though not found in nature,
the novel and interesting features of these engineered materials
and their possible applications to support short duration soliton
and non-soliton pulses are the primary motivation of this research
work. A clear distinction is present in terms of single negative such
as negative refraction and with double negative (DNG) material
[4,11,13,14]. Regular photonic crystal often time shows the nega-
tive refraction for the optical wave. For both cases, the optical wave
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encounter higher degree of losses. Even the soliton pulses which are
evolved due to delicate balance between dispersion and nonlinear-
ity will be dissipative in nature. Loss compensation is a challenge
to engineer these types of materials.

Recently reported DNG materials in visible infrared region by
Shalaev and others have shown promise to make optical wave-
guide with these materials. We  use the dispersion profile of the
reported metamaterial to determine the nature of the soliton pulse.
The effect of loss has also been considered. Comprehensive analyt-
ical and numerical studies using split step Fourier method (SSFM)
have been conducted to treat soliton wave propagation in regular
positive index materials. Negative index materials attract interest
in the nonlinear domain as it enhances the nonlinearity due the
confinement of electric field in a small region and other multiple
frequencies can be generated due to efficient phase matching pro-
cess. We,  then, extend the study for negative-indexed materials.
Fig. 1 shows dissipative soliton wave propagating through the DNG
material. High losses in DNG material cause the dissipation of the
soliton.

Fig. 2 shows the 3D view of bright and dark soliton pulses propa-
gating through 0.125 m optical waveguide with DNG metamaterial.
The pulse was  launched with 1.55 �m telecommunications wave-
length. Because of high loss in the DNG material, the soliton pulse
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Fig. 1. Dissipative femto-second soliton pulse propagated through bulk DNG mate-
rial  (a) temporal view and (b) spectral view.

Fig. 2. 3D view of guided optical soliton pulses after propagating through a 0.125 m
optical waveguide with meta materials: (a) bright soliton and (b) dark soliton.

gets attenuated over the distance. The shape of the soliton is con-
served as long as the balance between power and dispersion is
maintained.

2. Governing equation and soliton solutions

The dynamics of solitons in optical metamaterials is governed by
the nonlinear Schrödinger’s equation (NLSE) which in the dimen-
sionless form is given by [15]

iqt + aqxx + b|q|2q = i˛qx + i�(|q|2q)x + i�(|q|2)xq + �1(|q|2q)xx

+ �2|q|2qxx + �3q2q∗
xx (1)

Eq. (1) is the NLSE that is studied in the context of metamateri-
als. Here in (1), a and b are the group velocity dispersion and the
self-phase modulation terms respectively. This pair produces the
delicate balance between dispersion and nonlinearity that accounts
for the formation of the stable solitons. On the right hand side � rep-
resents the self-steepening term in order to avoid the formation of
shocks and � is the nonlinear dispersion, while  ̨ represents the
intermodal dispersion. Then finally, �j for j = 1, 2, 3 are the pertur-
bation terms that appears in the context of metamaterials [1].

This governing NLSE given by (1) will be solved by the aid of
ansatz method. The bright and dark soliton solutions will be derived
and discussed in the following two subsections. In order to proceed
with the soliton solution, the following ansatz is adopted [1]

q(x, t) = P(x, t)ei�, (2)

In (2), P(x, t) represents the bright or dark solitary wave profile
and �(x, t) is the phase component of the soliton that is defined as

� = −�x + ωt + � (3)

where � gives the soliton frequency and ω being the soliton wave
number while � represent the phase constant. Substituting (2) into
(1) and then decomposing into real and imaginary parts leads to

(ω + ˛� + a�2) + {�(� − �1�2 − �2�2 − �3�) − b}P3 − a
∂2

P

∂x2

+ 6�1

(
∂P

∂x

)2

+ (3�1 + �2 + �3)P2 ∂2
P

∂x2
= 0 (4)

and

∂P

∂t
− (  ̨ + 2a�)

∂P

∂x
= (3� + 2� − 6�1� − 2�2� + 2�3�)P2 ∂P

∂x
(5)

The imaginary part leads to the relations

v = −  ̨ − 2a� (6)

and

3� + 2� − 2�(3�1 + �2 − �3) = 0 (7)

Eq. (6) is the velocity of the soliton while relation (7) is the con-
straint condition that must be valid in order for the solitons to
exist. These relations (6) and (7) remain valid for both bright and
dark solitons. The real part equation, given by (4) will now be ana-
lyzed individually for bright and dark solitons in the following two
subsections

2.1. Bright solitons

For bright solitons, the choice for the wave profile given by [1]

P(x, t) = A sechp � (8)



Author's personal copy

A. Biswas et al. / Optik 125 (2014) 3299–3302 3301

where

� = B(x − vt) (9)

is picked. In (9), the soliton velocity is given by v while the inverse
width of the soliton is B. The value of the unknown exponent p will
fall out during the process of deriving the exact soliton solution.
Substituting this ansatz into (4) leads to the relation

(ω + ˛� + a�2) sechp � + {�(� − �1�2 − �2�2 − �3�) − b}A2 sech3p �

− ap2B2 sechp � + ap(p + 1)B2 sechp+2 � + 6�1p2A2B2 sech3p �

+(3�1 + �2 + �3)pA2B2{p sech3p � − (p + 1) sech3p+2 �} = 0

(10)

From (10), by the balancing principle, equating the exponents 3p
and p + 2 leads to

3p = p + 2 (11)

which gives

p = 1 (12)

Again, from (10) setting the coefficients of the linearly independent
functions sechp+j � for j = 0, 2 and sech3p+2 � to zero gives

ω = a(B2 − �2) − ˛� (13)

{�(� − �1�2 − �2�2 − �3�) − b}A2 + 3�1A2B2 + 2aB2 = 0 (14)

and

6�1 + �2 + �3 = 0 (15)

This finally shows that the bright 1-soliton solution in optical meta-
materials for the governing Eq. (1) is

q(x, t) = A sech[B(x − vt)]ei(−�x+ωt+�) (16)

where the amplitude A and the inverse width B of the soliton are
connected as given by (14), the velocity of the soliton is given by (6)
while the wave number is given by (13). Additionally, the constraint
conditions given by (7) and (15) must hold in order for the solitons
to exist.

2.2. Dark solitons

For dark solitons, the hypothesis is [1]

P(x, t) = A tanhp� (17)

where the same value of � as given by (9) is valid. In this case,
however, the parameters A and B are referred to as free parameters.
Therefore substituting (17) into the real part equation given by (4)
leads to

(ω + ˛� + a�2)tanhp� + {�(� − �1�2 − �2�2 − �3�) − b}A2 tanh3p�

− apB3{(p − 1) tanhp−2� − 2p tanhp� + (p + 1)tanhp+2�}
+ 6�1p2A2B2(tanh3p−2� − 2 tanh3p� + tanh3p+2�) + (3�1 + �2

+ �3)pA2B2{(p − 1)tanh3p−2� − 2p tanh3p�

+(p + 1)tanh3p+2�} = 0 (18)

Similarly as in the case of bright solitons, the balancing principle
yields the same value of p as in (12). An additional observation in
this case of dark solitons is that the coefficient of the stand-alone
perturbation term given by tanh p−2� must be zero. This also leads
to the same value of p as in (12). Now, setting the coefficients of

the other linearly independent functions tanh p+j� for j = 0, 2 and
tanh 3p+l� for l = −2, 2 gives the following

ω = −a(2B2 + �2) − ˛� (19)

{�(� − �1�2 − �2�2 − �3�) − b}A2 − 2(9�1 + �2 + �3) − 2aB2 = 0

(20)

�1 = 0 (21)

and

�2 + �3 = 0 (22)

Implementing conditions (21) and (22) into (20) leads to the rela-
tion between the free parameters as

B =
[

�(� − �1�2 − �2�2 − �3�) − b

2a

]1/2

A (23)

while the constraint condition given by (7) simplifies to

3� + 2� − 2�(�2 − �3) = 0 (24)

Again the relation (23) induces the restriction

a{�(� − �2�2 − �3�) − b} > 0 (25)

Hence finally, with the constraint condition (21), the model Eq.
(1), for dark solitons in optical metamaterials, reduces to

iqt + aqxx + b|q|2q = i˛qx + i�(|q|2q)x + i�(|q|2)xq + �2|q|2qxx

+ �3q2q∗
xx (26)

whose dark 1-soliton solution is given by

q(x, t) = A tanh[B(x − vt)]ei(−�x+ωt+�) (27)

where the velocity and the wave numbers are (6) and (19) respec-
tively. The relation between the free parameters is then given by
(23). The constraints and restriction given by (22), (24) and (25)
must hold in order for the dark soliton solution to exist in metama-
terials.

3. Conclusions

This paper addresses the dynamics of the solitons in optical
metamaterials with Kerr law nonlinearity. Both bright and dark
soliton solutions are obtained. There a few constraint conditions
that naturally fell off during the course of derivation of the soliton
solution. These conditions must remain valid in order for the soli-
tons to exist. There are a couple of numerical simulations that are
included for both bright and dark solitons in order to expose the
fact that these solitons undergo dissipative effect.

These results will be extended in future. There are other laws of
nonlinearity that will be taken into consideration. These are the
power law, parabolic law, dual-power law and logarithmic law.
Several other integration techniques will be applied and the cor-
responding bright, dark and singular solitons will retrieved. These
results will be subsequently extended to birefringent optical meta-
materials, DWDM systems as well as nonlinear directional couplers.
They will be reported in future. This is just the tip of the iceberg.
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