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1. Introduction

Optical solitons, with a wide range of nonlinear forms of fiber, have been around for quite a long time [1-10]. In particular, anti-
cubic (AC) nonlinearity was conceived during 2003 [8]. Several studies have been conducted with AC nonlinearity. These include
conservation laws, resonant solitons, soliton perturbation, magneto-optic waveguides and many others. It is now time to turn the
page and move on to a new chapter. This paper thus considers a generalized version of AC nonlinearity. The extended trial function
scheme is applied to retrieve soliton solutions to the governing nonlinear Schrédinger's equation (NLSE). Both chirped as well as
chirp-free soliton solutions are considered. Bright and singular soliton solutions are revealed with this scheme. The model is first
introduced in the paper as a generalized form of AC nonlinearity. Subsequently, the soliton solution derivation details are carried out.
These are explored in the rest of the paper.

2. Governing model

The NLSE with AC nonlinearity and spatio-temporal dispersion (STD) is: [2-4,8-10]
ig, + aqy, + bq,, + (c1 1gI™ + ¢3 g + ¢; 1g1*)g = 0, Ie))

where a, b, c;, c; and c3 are real-valued constants. The independent variables are x and t that represents spatial and temporal co-
ordinates. Again the dependent variable is q(x, t) that is a complex-valued function. In (1), if ¢; = 0 it collapses to NLSE with
parabolic law or cubic-quintic law of nonlinearity that has been extensively studied. It is this c; that introduces the anti-cubic

* Corresponding author.
E-mail address: mehmet.ekici@bozok.edu.tr (M. Ekici).

https://doi.org/10.1016/j.ijle0.2018.09.045
Received 8 July 2018; Accepted 13 September 2018
0030-4026/ © 2018 Elsevier GmbH. All rights reserved.



A. Biswas et al. Optik - International Journal for Light and Electron Optics 178 (2019) 636-644

nonlinear term.
Now, let us introduce the model with generalized AC nonlinearity as:

iq, + aqy + bgy, + {1 1gI7"*? + ¢, IgP" + ¢3 1gP"*2}g = 0. 2

This study will now embark into the retrieval of chirp-free solitons and chirped solitons using extended trial function scheme (ETFS)
[5-7] in the subsequent two subsections.

2.1. Chirp-free solitons

To secure chirp-free solitons, the starting hypothesis is

qlx, 1) = g(s)e#™n, 3
where g(s) represents the shape of the pulse,

s=x-—Vt, “@
and

¢ = —xx + wt + 6. )

The function ¢(x, t) is the phase component of the soliton, « is the soliton frequency, while w is the wave number, 6 is the phase
constant and v is the velocity of the soliton. After inserting (3) into (2), and separating into real and imaginary parts respectively lead
to

— ax?g?*? — g2 4 brwg?™t? 4+ ¢ + ¥ 2 4+ gttt 4+ ag?tlg” — bvg?itlg” =0, 6)
and

(bw — 2ax + v(bx — 1))g¥"*g’ = 0. 7
From (7), the velocity of the soliton falls out to be

_ bw — 2ax
1—bx ®

Next, in order to recover closed form solutions, one employs the transformation given by

g, 1) = i (x, 1), ©
that will carry out Eq. (6) to

ci(n+ 1)2 = (n + 1)%(ax? + o — bxw)@? + c3(n + 1)%0* + co(n + l)zfp%n(bv —a)(@)? + (n+ 1)(a —bv)py” =0. (10)
For integrability, one must select ¢, = 0. This leads to the modification of the model of study as:

iq, + aq,, + bq,, + {c1 1g7@*?D 4 ¢; IgP"*+2}g = 0. a1
Consequently, Eq. (10) changes to

ci(n+ 12— (n + 1)%(ax® + @ — bxw)@? + c3(n + 1)%p* + n(bv — a)(¢')?> + (n + 1)(a — bv)pe” = 0. (12)

2.1.1. Extended trial function scheme
To start off, the start-up assumption for the solution structure to (12) is given by

s
v =27

Jj=0 13)
where

L(®) _ P + 4+ @ + iy

(@) = O(®) = = ,
Y@ A+ p® (14)

Here o, ..., Y¢; Ho, .-, Hgand Xo, ..., X, are unknown coefficients that will be fixed later such that y,, 1, and ), are non-zero constants.
Eq. (14) can be reformulated with an integral form as

do Y(®)
i(s—so)=f °@) =f\/%d¢’

Balancing (¢')? or @@” with ¢* in Eq. (12) leads to

(15)

e=p+ 2 +2. (16)
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When ¢ = 4, p =0 and ¢ = 1 in Eq. (16), ETFS admits the use of the finite expansion
»=%+ne 17)
Substituting (17) into (12), collecting the coefficients of ®, and solving the resulting system one has

Mo = Mo> My = Hy»
W=Y h=h
_ nn+2)(a—-bviy Curor = 1)
07 2+ DXam++eng)

u =0 (c1(n + 2 + canys (Spavo — 84011)
2 - ’

2037!}/05 +2c1(n+2)yy

_ 2e3nprE (o — 2om)
M3 = C3ny6‘+cl(n+2)
_ e3m Guyyo — 24071
Ky = chnyé +2c1(n+2) ’
w= mi(n+2)+an(n+ 2)7(275 - cgnyg') —2nugyory (a(n + 2)x2— 203;/02)

n(n+2)(bx — Dyo (i 7o — 2u071) : (18)

Substituting this set into Eqs. (14) and (15) causes

dod
+(s—50)=Q —_—,
’ ' f VO (@) (19)
where
O = @,
My (20)

O(P) = d* + Bags 4 L2924 Pag 4 Fo
My My My My 21

As a consequence, traveling wave solutions to the model are retrieved as follows:
For (@) = (@ &),

1
o n+l
"
qx, )= 1+ n& £ #
x—{ 1-bx }t_SO
e t(e1(n+2) +an(n+ 2122 — e3nyd) - 2nugron (a(n + 22 — 2e378)
X eXP[l{ o+ ( n(n+2)(bx — Dyo (i — 21011 E+0r | (22)
If 0(@) = (@ - ()*(@— ¢ and &, > {y,
1
n+1
MARG-»
qx, D= 1%+ n&G+ 11 zbmjmx 2
49%—[(§1—{2)(x—{ﬁ}t—so)]
N w(ci(n+2)+an(n+ 2)1(2702— 03n704) = 2npgyry (a(n + 22— 2”3702)
X exp[l{ o+ ( n(n+2)(bx — Do Gar o — 24011 L+or | (23)
However, when ©(®) = (®— £)%(®— {»)?,
1
n+1
n&G-4
q(X, )= N+ },1§2 + G4-4 : bi,_zlm{
SN
 exp| il —ior 4 [Flern+D+ant+ 2eg - esmg) — 2muoron (an+ 22— 2e5) ) g
P n(n+ 2)(bx — Dyp (7o — 2o77) ’ 24
and
1
n+1
nG-%
Q(x) t)= Y + ylgl + a-% ! bla,,:a;{
cxp[—Ql (X7{71—bx }tfso)}*l
N w(ci(n+2)+an(n+ 2)1(27(%— C3n76‘) = 2npgyry (a(n + 22— 2”3;'02)
X exp[l{ o+ ( n(n+2)(bx — 1)y (uy 9 — 24071) t+0 ' (25)
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Whenever O(®) = (@ — ()X (@— ()(@— ) and & > &n > g,

1
n+1

G-9G-%)
K-t (G0 Cosh[ d(ﬁ—;gfﬁ—@ {xf{b?:lfzk}t)]

N t(e1(n+2) +an(n + 2% — c3nyg) = 2npgron (a(n + 2 = 2e338)
X exp[z{ X + ( 1+ D= Do Grto— 2Hory) t+ 06t

q(x’ t): % + ylgl -

(26)
Finally, if ©(®) = (®— {1)(P— {)(P— {3)(@— ) and & > {o > (3 > (a4,
1
n+1
G-9¢-%)
q(x, t)= % + }/1§2 + 7%2
=Gt (G = Ly sn? [:V 11— -4 (x_{bw—zak}[_m)’k]
201 1-bx
X exp il oo+ mi(n+2)+an(n+ 2)1(27(%— cg,nyé) —2nugygry (a(n + 2)x2— 2L‘3y02) t+0 i
n(n+2)(bx — Dyo (79 — 26071) @27
where
K2 = (52 - §3)(§1 - §4)
(51 - §3)(§2 - §4) (28)
One needs to explain that §; for j = 1, ..., 4 are the roots of
0(®) =0. (29)
For yo = — y1{1 and sy = 0, the solutions (22)—(26) can be reduced to plane wave solutions
1
o n+1
Q0 = 1+ — s
x= { 1—bx }l
X exp il oo+ mi(n+2)+an(n+ 2)1(2702 - C3n704) —2nugyery (@(n+ 2)x2— 2L‘3y02) t+0 i
n(n+2)(bx — Dyo (7o — 24071) (30)
1
n+1
NnARG-4
q@x, 0= e
403 - [(gl—g2>(x_{ ﬂ:_bzx}:)]
X exp il e+ M cr(n+2)+an(n+ 2)1(273— cgny(;‘) = 2npgYoyy (a(n+ 2)x2— 203;/02) t+0 i
n(n+ 2)(bx — Dyo (170 — 2H071) 31
singular soliton solutions
1
_ I n&-& _ q4-% bw — 2ax n+1
q(x, t)— {T(l + COth[z—Ql(x - {m}t)])}
x exp| i{—x + [ (c1(n +2) +an(n +2)x%3 — e3nyg) — 2npgyor (a(n + 2)x2 = 2c378) r+o}|
n(n+2)(bx — Do (79 — 2H071) (32)
and bright soliton solution
P
qx, t)= ! -
(‘Rl + cosh [51(x - {L::zzk}[) ] )nﬂ
X exp il oo+ mi(n+2)+an(n+ 2)1(2702— cg,nyé) —2nugygry (a(n + 2)x2— 2L‘3y02) t+0 i
n(n+2)(bx — Dy (i vo — 24071) (33)
where
1
(Zyl (R s;))nﬂ
P=|—F"" ,
-6 (34)
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R, = 2§1_ G- §3’
§3 - gz (35)
A (gl - gz)(gl - §3)
31 =
(o} (36)
Here, amplitude of the soliton is given by #; while inverse width is indicated by S; The recovered solitons imply the constraint
y1 < 0. On the other hand, if yo = — y1{> and sy = 0, Jacobi elliptic function solutions (27) can be reduced to
qCx, )= t2

1
2| o f, _ [be—2ax G-3)G L [|r+1
(*ﬁ o [SJ(" " }‘) (ﬁ—g)@;—m])

] ul(cl(n+2)+an(n+2)1<27(%—c:,nyé‘)—Znyoyoyl(a(n-f—2)1(2—283;/02)
X exp[l{ o+ ( n 1+ D% = Do Grto— 2Hory) t+0t |,

37)
where
_1
P, = (71@1 = &), — gz))"“
2=\ s
§1 - §4 (38)
R, = §4 — gz ,
§1 - {4 (39)
(=1)7J(G = &) =S
5o CONE=OG-8 .,
20, (40)
Remark 1. When the modulus k — 1, singular optical soliton solutions emerge as
qlx, t)= £z T
(‘Rz+lanhz[Sj(x—{b{;}:zzx}t)])n+1
w exp] i]—c + (# (e1(n+2)-+ an(n + 2%y = esny) = 2nporon @l + D2 = 2e318) ) g ,
n(n+2)(bx — )y (70 — 21071) (41)
where {3 = {4.
Remark 2. However, if k — 0, periodic singular solutions are
qx, D= & -
(‘R2+ sinz[Sj(x—{L::z:x}[)])wrl
x exp il + ul(cl(n+2)+an(n+2)k2yoz—c3ny6‘)—2n/40;/0y1(11(n+2)k2—203yoz) t+ 0 i
n(n+2)(bx — 1)y (uy¥p — 24071) (42)
where ¢, = (3.
2.2. Chirped solitons
In order to procure chirped solitons, the start-up assumption is
q(x, 1) = g(s)el®el, (43)

where g(s) is the amplitude function,
s=Xx-—Vt, 44)

and v is the wave velocity. Also, y (s) is the phase function and w is the frequency of the wave oscillation.
Next, insert (43) into (2) and then split into real and imaginary parts. Real part yields

wg% + 187" + 82" + c3g7 + (v + bw)g¥’ — (a —bVv)g*(x')? + (@ —bv)gg” =0, (45)

while imaginary part gives
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(v + bw)gg’ — 2(a —bv)gg’y’ — (a —bv)gx" =0, (46)
where g = dg/ds, g” = d°g/ds?, x’ = dy/ds and x” = d*y/ds>. Now, integrating (46), with zero constant of integration, gives rise to

, _ Vv+bw
2(@-bv)’ 47)

and then the corresponding chirp defined by

5w = —ai () — ] = —¢'(5),
X

(48)
can be written as
Soo(x, £) = - b0
2(a —bv) (49)
Substituting (47) into (45) yields
4ci(a — bv) + (V2 — 2bvew + w(da + b%w))g?" 2 + 4cy(a — bv)g**2 + 4cz(a — bv)g¥** + 4(a — bv)’g¥tig” = 0. (50)
To get a closed form analytic solution, one utilizes a transformation formula
1
g0x, 1) = gn+1(x, 1), (51)

that will carry (50) into
4c1(n + 1)%(a = bv) + (n + 1)?(daw + (v — bw)?)@? + 4c,(n + 1)*(a — bv)qot%lz + 4c3(n + 1)%(a — bv)p* — 4n(a — bv)?(¢')?
+ 4(n + 1)(a — bv)’pp” = 0. (52)
For chirped solitons, one needs to choose ¢, = 0, as well, for permitting integrability. In this case, Eq. (52) changes to

4c1(n + 1)%(a —bv) + (n + 1)%(4aw + (v — bw)?)@? + 4cs(n + 1)%(a — bv)p* — 4n(a — bv)2(¢')? + 4(n + 1)(a — bv)’pp”
=0. (53)

2.2.1. Extended trial function scheme
Balancing (¢')? or g@” with ¢* in Eq. (53) one has

o=p+ 26+ 2. (GD]
When ¢ = 4, p = 0 and ¢ = 1 in Eq. (54), ETFS admits the use of the finite expansion

P=%+ne (55)
Substituting (55) into (53), collecting the coefficients of ®, and solving the resulting system one has

Hy = Hy M3 = H3,
W=Y Nh=h
_ (n+2)(@a-bv)us

X = 403(n+1)2y071 ’
e3nyg (pan = Su3r) — c1(n + 2pg
o = 4C3"}’01’13 ’
_ 200(an —m3%) _ Han
“1 - T’ /"4 - T}’o’

_ (n42@a-bviuz +2y |(n+2)(a = bV)uz (u3(a(n +2) — 6b%e3yd) + 4b203u2y0y1)
b2(n+ 23 (56)

Substituting this set into Eqgs. (14) and (15) causes

=+ (S - SO) )
‘[ \/®(<D (57)
where
X
s (58)
0@) = ot + Lg3 4 B2q2 4 1 Ho
My Hy My My (59)

As a result, traveling wave solutions to the model are acquired as below:
For ©(®) = (- ()",
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1
N 1
qx, D)= {7’0 +né+ X,it,so}'”
2)(2a-b 2(n+2)@-b 2) — 6b2c3yd) + 4b?
xexp|ilylx—vil + (n+2)(2a—-bv)uz +2\(n+2)(a sz;wa(am ) €3%5) C3U27071) A
b*(n+2)us

If O(®) = (@ — {)*(@— &) and & > &,

1
4103 - &) n+1
403 -G - Q& —vi—s0)P

[
X exp [l {X [x —v t] 4 ((n +2)2a—-bv)us + ZV(" +2)(@-bv)uz(uz(a(n+2)— 6b203y02) + 4b203;427071) )[} ] )

ate. 0= {n+ns+

b2(n + 2)uz

However, when (®) = (®— ¢1)%(® — ()%,
1
eS|
n&G-4

exp[%(x—vt—sg)] -1

2)(2a-b 2J(n+2)a-b 2) — 6b2c3y2) + 4b?
Xexp[i{x[x_vt] . [<n+ )(2a— b Vg3 + 2/(n +2)(a— b Vg (3 @(n +2) — 6b2esrd) + Ca/lznm))t}]’

qix, = 1p +ns +

b2(n+2)us

and

1
n+1

nG-%
Q(x’ t)= % + Y1§1 + {1_{21 =2
exp[g—z(x—vt—so)]—l

A (n+2)(2a—bV)uz +2,/(n+2)(a—bv), (a(n +2) — 6b2c3y2) + 4b% )
Xexp[l{){[x—vt] + ( R bz‘(,n#j(;;;an O P
3

Whenever ©(®) = (@ — ()X (@— ()(@— &) and & > &n > g,

1
n+1

2nG-9G-%)
%i-b-G+G-8) h[w

X exp [l {X [x —v t] 4 ((n +2)2a—-bv)us + ZV/(n +2)(@-bv)uz(uz(a(n+2)— 6b203;/02) + 4bzc3;42;/oyl) )[} ] )

qlx, = 1%+ né -

(x=vt)

b2(n + 2)uz

Finally, if ©(®) = (@ — {1)(@— {)(®— () (P— ) and {1 > §o > {3 > {4,

nG-9H%-%

/G -3 -4
= G- gosna VA DEE)

qx, = {p+ns+ Ykt

(x—vt—sp0),k]

(n+2)(2a —bV)us +2y(n+ 2)(@ — bv)uz (u3(a(n +2) — 6b%e3y) + 4b%capvo71)

xexplifylx —vt] + ( )3,

b2(n+2)us
where
k2 = @2 — §3)(§1 — §4)
@1 - §3)(§2 - §4)
One needs to explain that {; for j = 1, ..., 4 are the roots of
O(®) = 0.
For yo = — y1{1 and so = 0, the solutions (60)-(64) can be reduced to plane wave solutions
Q 1
q(x, = {i xh_vzt}ru-l
X exp [i {)( [x—vi] + [(n+2)(2a—bv)/13 + 2\§(n+2)(a—b2v)u3 (u3(a(n +2) — 6b%c3yd) + 4b%capa 7)) )[} ]’
b*(n+2)us
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403 - (G- HE-vyP

+2)(2a—b +2/(n+2)(a—b +2) — 6b2c3y2) + 4b?
xexp[i{x[x—vt]+((n )(2a = b Vg + 2/(n +2)(a = b Vs (k3 @ +2) — 6b%es ) C3MzVoV1))t}:|’

1
qCx, )= { 47103 - &) }n+1

b2(n+2
(n+2)us ( 6 9)
singular soliton solutions
1
qx, t)= {771@22_ Y (1 F coth [ §12;2§z (x—vt) ] )}n+1
X exp [l {x [x _v t] " ((n +2)2a—-bv)uz + 2\‘;“(n +2)(a— bzv)/z3 (u3(@a(n+2)— 6b203702) + 4bzc3;zzyoyl) )t} :|’
be(n+2)u3
(70)
and bright soliton solution
q(x, )= {%}
(R3+ cosh[Sa(x—vt)])n+1
X exp [i {)( [x—vi] + ((n +2)2a—-bV)uz+2\(n+2)@— bzv)M3 (u3(a(n +2) — 6b%c3yd) + 4b%c3uyyor,) )t} ]
be(n+2)u3
(71)
where
1
Py = (%(g -0 - g))nﬂ
§3 - gz (72)
R3= 2§1_ é‘z_ §3,
G=% (73)
A (51 - §z)(§1 - §3)
84 -
Q, 74)
Here, the amplitude #; and the inverse width S, of the soliton are located in (72) and (74) respectively. The derived solitons
introduce the constraint y; < 0. On the other hand, if yo = —y1{5 and s, = 0, the solutions given by (65) can be reduced to
qx, )= 2

1
G- -W ])m

2| Si(x—
(734+ sn’ [Sj(x Vi), QG-

X exp [i {x i+ [(n +2)2a—bVy +2,/(n+2)(a —bb2 ::lﬂj (2;;; (a(n+2) - 6b%3y) + b3y 7071 )t} } ,
3

(75)
where
1
P, = (71((1 - &) — gz))"“
§1 - §4 (76)
R, = §4 - 4‘2’
§1 - §4 (77)
DG = E =)
g CONE=BG=T
2Q, (78)
Remark 3. When the modulus k — 1, singular optical soliton solutions emerge as
O T p—
(R4 + tanh?[Sj(x— v ) n+1
X exp [i {){ x—vi] + ((n +2)(2a—bV)uz +2y(n+2)(a —bt;\(/zlyj (;;;(:(n +2) - 6b%c3yd) + 4b2c3uyypr,) )[} :|’
(79)

where {3 = {4.
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Remark 4. However, if k — 0, periodic singular solutions are

qx, )= e

(Rg + sin?[Sj(x — vt)J)n}rl

(1+2)2a = bV + 21+ 2)(@ = b V)3 (3 (a(n + 2) — 6b%c3yd) + 4b2c3ptzpo71) )[

X exp| i )([x—vt]+( Pt Dty

(80)
where ¢, = (5.

Remark 5. It is interesting to note that the chirping corresponding to Egs. (60)-(65), (68)—(71), (75), (79) and (80) is same and this
chirping is given as

v .\ (n +2)(2a — bv)u, + 2,/(n + 2)(a — bV (uy(a(n + 2) — 6b%csy2) + 4b%cspa,7o0)
2@—bv) 2b(n + 2)(a — bV, ' (81)

Sw(x, t) = —

3. Conclusions

This paper recovered chirped and chirp-free bright and singular optical solitons with generalized AC nonlinearity. The ETFS was
the integration methodology adopted. The results are being reported for the first time. It is clearly noted that this algorithm fails to
retrieve dark soliton solutions to the model. Later, additional integration schemes, such as Lie symmetry analysis or Kudryashov's
method and others will be adopted to secure dark solitons and other forms of waves.

This is a newly introduced model. Therefore, there is a lot of work that lies ahead with this model. A few of them are locating its
conservation laws, study of soliton cooling effect, application to magneto-optic waveguides and optical couplers, study of optical
metamaterials with this model, just to name a few. Furthermore, this model can be studied with stochastic perturbation terms as well
as time-dependent coefficients. The results of those research activities are awaited at this time and will be gradually reported with
time.
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