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Transverse instabilities in photorefractive counterpropagating
two-wave mixing
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Threshold analysis for transverse instabilities in photorefractive counterpropagating two-wave mixing through
ref lection gratings is performed. A numerical algorithm for the treatment of wave equations in this geometry
is developed, displaying the emergence of running transverse waves. They appear above a threshold in the
applied electric field, and their transverse wave number and oscillation frequency agree well with the values
predicted by stability analysis.  1997 Optical Society of America
Following the pioneering work by Honda1 on the for-
mation of transverse wave patterns in photorefractive
(PR) media, a number of reports2,3 appeared, aimed
at explaining the phenomenon. In a geometry of two
counterpropagating beams, transverse oscillatory in-
stabilities arise, leading to the generation of sidebands
and the formation of hexagonal patterns. Explanation
is impeded by the fact that the patterns appear through
ref lection gratings, which is known to cause difficul-
ties for analytical and numerical treatment. Thresh-
old analyses performed thus far2,3 offer improved
understanding; however, signif icant differences per-
sist. We attempt to improve the analyses by including
two important missing ingredients.

The first ingredient is taking into account tempo-
ral variations in the grating amplitude Q when per-
forming stability analysis. In sluggish PR media the
variations in Q are driving the secondary instability
directly and should be included in the analysis. The
second ingredient is taking into account strong modu-
lation depth effects. Up to now the dispersion rela-
tions were derived in the limit of high fringe visibility,
whereas the wave equations came from the Kukhtarev
model, valid for shallow modulation. Based on these
improvements a transverse numerical procedure is for-
mulated, displaying the appearance of secondary insta-
bilities—the running transverse waves.

The starting point is the scaled equations in the
slowly varying envelope approximation for the PR two-
wave mixing through ref lection gratings,4

≠zA1 1 if≠x
2A1 ­ 2QA2 , (1a)

2≠zA2 1 if≠x
2A2 ­ QpA1 , (1b)

where A1 and A2 are the forward- and backward-
propagating beams, respectively, and f is proportional
to the inverse of the Fresnel number. One transverse
dimension is considered, suff icient to display the ap-
pearance of sidebands. The temporal evolution of Q is
approximated by a relaxation equation of the form4
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t≠tQ 1 hQ ­ G
A1A2
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jA1j2 1 jA2j2
, (2)

where t is the relaxation time, h ­ sED 1 Eq 1

iE0dysEm 1 ED 1 iE0d is a parameter dependent on
the internal electric fields of the crystal, and G ­
G0s1 1 EqyEDdsED 1 iE0dysEm 1 ED 1 iE0d is the PR
coupling constant. E0 is the external dc field, applied
to the crystal along the propagation direction z. The
Kukhtarev model, which will be modif ied to accom-
modate the nonlinear modulation-depth dependence,
is adopted. It is also assumed that the characteristic
transverse length over which Q changes is large com-
pared with the grating period.

Modulation-depth effects are accounted for phe-
nomenologically, by assuming that the coupling con-
stant G0 is a function of the modulation depth m. Such
a procedure is well documented in the literature.5 For
the model function we pick one of the forms used,
known to improve the agreement with experiment:

G0smd ­
G0

1 1 bmy2
, (3)

where b is a f itting parameter. Rigorous inclusion of
modulation-depth effects requires numerical solution
of the Kukhtarev material equations,5 together with
the solution of wave equations. This is computation-
ally expensive.

The stability analysis proceeds with the assumption
of a small perturbation of the wave and the grating
amplitudes:

A1sz, x, td ­ A0
1szdf1 1 ea1sz, x, tdg , (4a)

A2sz, x, td ­ A0
2szdf1 1 ea2sz, x, tdg , (4b)

Qsz, x, td ­ Q0szdf1 1 eqsz, x, tdg , (4c)

about an unperturbed plane-wave state, denoted by
the superscript 0. Substituting Eqs. (4) into Eqs. (1)
and (2) and performing the Laplace transform in t and
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the Fourier transform in x, one obtains the following
equations for the perturbation components:

≠za1 2 ifk2a1 ­ Ge
a1 2 a2 2 q
1 1 r 1 b

p
r

, (5a)

2≠za2 2 ifk2a2 ­ Gp
e

rsa1 2 a2 1 qpd
1 1 r 1 b

p
r

, (5b)

stel 1 1dq

­
a1 2 a2 2 rsa1 2 a2dp 1 b

p
rsa1 2 a2 2 ap

1 1 ap
2 dy2

1 1 r 1 b
p

r
(5c)

of the order of e. Here rszd ­ I 0
1 szdyI 0

2 szd is the un-
perturbed beam ratio at some point z in the crystal,
and Ge ­ Gyh and te ­ tyh are the effective com-
plex coupling and relaxation constants. The modu-
lation depth is included in Eqs. (5) through the
dependence on r: m ­ 2

p
rys1 1 rd.

Equation (5c) is an algebraic expression for q that
can be substituted into Eqs. (5a) and (5b). They are
now cast in a matrix form,

≠za ­ Asz, k, ldasz, k, ld , (6)

where a ­ sa1, ap
1 , a2, ap

2 dT . This equation cannot be
solved analytically. However, the ratio of beams r is
roughly constant for ref lection gratings. An approxi-
mation of r ­ 1 is quite good for strong couplings and a
weak incident backward beam. This means that m ­
1 but does not lead to an inconsistency, since strong
modulation depth effects are accounted for. Then the
solution of Eq. (6) is given by asLd ­ F sLdas0d, where
F szd ­ expsAzd is the f low matrix of the linearized
system and L is the thickness of the crystal. The
f low matrix consists of four 2 3 2 blocks Fij si, j ­
1, 2d. Taking into account two-point boundary condi-
tions, we obtain the final form of the solution,

aszoutd ­ S sk, ldaszind , (7)

where S is the scattering matrix of the problem and
zout and zin are the output and the input faces of the
crystal for the respective beams.

The poles of the scattering matrix determine the
nature and the dynamics of an instability. In our case,
the poles of S are found from the equation dets F22d ­ 0,
which, when written explicitly, leads to the following
dispersion relation:

expsgd 1 exps gd 1 2 exp
µ

g 1 g
2

∂
3 fcossx1dcossx2d 1 p sincsx1dsincsx2dg ­ 0 , (8)

where x1
2 ­ ksk 1 bd 2 g2y4, x2

2sld ­ ksk 1 hd 2

g2y4, and psld ­ kfk 1 s b 1 hdy2g 1 bhy2 1 ggy4.
The functions gsld ­ lfGeteyslte 1 1d 1 sGetedpysltp

e 1

1dgy2 and hsld ­ lfGeteyslte 1 1d 2 sGetedpysltp
e 1

1dgy2i appear because of the variations in Q. g and
b are, respectively, the real and the imaginary parts
of Ge, and k ­ fk2. Equation (8) is one of the main
results of this Letter. It is written for b ­ 0, so that
it can be compared directly with the other2,3 published
results. Let us analyze its consequences.
The instability threshold is inferred from the lowest-
lying branches of the dispersion relation (Fig. 1). The
generic feature of transverse instabilities, as found
here, is that they arise at a finite value of E0 through
a Hopf bifurcation of the f ixed point (unperturbed
solution) at a characteristic transverse wave vector
k and a characteristic frequency V ­ Im l. The

Fig. 1. (a) Threshold curves of the applied electric field
and (b) threshold frequency of the grating amplitude as
functions of the transverse wave vector. The solid curves
are for E0 , 0; the dashed curves for E0 . 0. The beam
ratio inside the crystal is r ­ 1, the bare coupling constant
is G0 ­ 2 cm21, and b ­ 0. sFP and uFP denote the regions
of stable and unstable f ixed points, respectively. Hopf and
S-N (saddle node) indicate the nature of the bifurcation as
the threshold curve is crossed in the direction of the arrows.

Fig. 2. Running transverse waves obtained in a numeri-
cal simulation above the instability threshold. Transverse
output distributions of (a) I1 and (b) I2 are shown as func-
tions of time, after transients have died away. The pa-
rameters of the simulation are the same as in Fig. 1. The
input beam ratio is r0 ­ 20.09 (corresponding to r ­
1). Other parameters are E0 ­ 22ED and f ­ 0.001. E0
is chosen somewhat above Ec

0 ø 21.7ED to avoid critical
slowing down.
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Fig. 3. Spatial distribution of intensities (a) I1 and (b) I2
within the crystal at time t ­ 1000t. The arrows indicate
the propagation direction. The parameters are the same
as in Fig. 2.

minimum value of k at which the instability occurs
(which translates into a critical angle at which the
sidebands appear in the far f ield) is found at the point
where Re l becomes positive for the first time. These
results differ from those previously published2,3 in two
important aspects. The first is that the plane-wave
limit is predicted to be unstable for both polarities
of E0, with the critical value approximately equal to
68.6 diffusion f ields ED of the crystal. This agrees
with earlier accounts,6 in which a four–wave mixing
process in the plane-wave approximation was driven
to instabilities and temporal chaos through a series of
Hopf bifurcations.

The second aspect is the importance of the sluggish-
ness of PR media, which at a threshold (either in E0 or
in G0) causes slow oscillation of the grating amplitude.
This oscillation implants a small frequency offset in the
counterpropagating beams and drives them to instabil-
ity. The frequency shift introduced by Saffman et al.2

is of a different nature. The consequence of not in-
cluding variations in Q is that instability balloons ap-
pear in the threshold curves. A similar balloon is part
of what is displayed in Fig. 1. The characteristic fre-
quencies where the balloons appear are zero. Hence
the nature of the bifurcation as the balloon border is
crossed changes to that of a saddle node. However,
this happens at a threshold that is always higher than
the one obtained for the Hopf bifurcation and there-
fore is not observable. Here the lowest (actually, the
highest, for negative E0) threshold of the applied f ield
Ec

0 ø 21.7ED is attained at fk2 ø 3.6w0
22, where w0 is

the beam spot size. The corresponding Vc ø 0.031t21.
To corroborate these findings, we produce a reliable

numerical code based on the modif ied beam propa-
gation method4 that treats the transverse two-wave
mixing in ref lection geometry and reveals the insta-
bilities according to the model. The agreement is
pronounced, both qualitatively and quantitatively.
Figure 2 depicts running transverse waves slightly
above the predicted threshold, obtained as a result of
spontaneous destabilization of two Gaussian beams in-
cident upon the opposite faces fo the crystal. Figure 3
displays the spatial distribution of the f ields within
the crystal at some instant of time. If the polarity of
E0 is f lipped (keeping other parameters unchanged),
then no instability is found, in agreement with the
stability analysis. The value of E0 ­ 12ED is below
the predicted threshold of Ec

0 ø 13.2ED .
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