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Exact solution to four-wave mixing with complex
couplings: reflection geometry
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Institute of Physics, P.O. Box 57, 11001, Beograd, Yugoslavia,
and Department of Physics, Texas A&M University, College Station, Texas 77843-4242

Dejan Timotijević
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An exact solution to photorefractive four-wave mixing equations with complex couplings in ref lection geometry
is obtained. It is shown that the efficiency of the process of phase conjugation can be enhanced by introduction
of a frequency shift between the pumps and the signal, similar to the case of transmission geometry. However,
to obtain an improved agreement with experiment, the inclusion of transverse effects is found to be necessary.
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In a seminal paper1 published in 1982, Cronin-Golomb
et al. obtained an exact solution to the problem of
four-wave mixing in the transmission geometry (TG),
in which the coupling constant g is allowed to be
an arbitrary complex number. Simplif ied procedures2

soon followed that could treat the TG or the ref lection
geometry (RG) of wave mixing in photorefractive (PR)
crystals for g real. This amounts to assuming that
the buildup of space-charge f ield in the crystal is
dominated by the diffusion of photoexcited charge
carriers. We3 introduced a unified procedure that
treats both the TG and the RG on an equal footing, also
for g real. A natural question is whether there exists
a unified procedure for g complex. Such a choice for g

is relevant for many physically interesting situations,
for example, when one applies an external electric f ield
to the crystal (to enhance wave coupling) or when one
encounters or enforces detuning of intracavity fields in
PR oscillators (to maximize ref lectivity).

The short answer to the question posed is in the af-
firmative; however, there remains the problem of the
most effective presentation of such a procedure. Ow-
ing to symmetries3,4 that exist between TG and RG, a
procedure invented to solve one case (TG) usually leads
to a procedure to solve the other (RG). However, ow-
ing to symmetry-breaking mechanisms built into the
physics of these two wave-mixing processes, new pro-
cedures usually are less practical or comprehensible.
Thus we try to devise a simple procedure for g com-
plex. In our opinion, the most effective approach is
to generalize directly the method of Cronin-Golomb
et al. to include RG. Curiously enough, Cronin-Golomb
et al. choose not to generalize their TG method to
treat RG but instead developed an entirely different
0146-9592/96/050321-03$6.00/0
method,2 which was suited only for the case of g real.
In the end, we apply the procedure to the problem of
spontaneous frequency detunings. This problem, as it
turned out, can be resolved only if transverse effects
are taken into account.

The object is to solve four-wave mixing phase-
conjugation (PC) equations2:
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in the standard RG arrangement. Beams A1 and A4
illuminate the crystal from the z ­ 0 side, with the
boundary conditions A1, 4s0d ­ C1, 4. Beams A2 and
A3 illuminate the crystal from the z ­ d side, with
the boundary conditions A2, 3sdd ­ C2, 3, where d is
the thickness of the crystal. The angle at the beams’
intersection is assumed small, and z is the propagation
direction. Here Q ­ A1Ap

3 1 Ap
2 A4 is the amplitude

of the grating that is generated in the crystal and I
is the total intensity. The asterisk stands for complex
conjugation.

The solution procedure is facilitated by the existence
of conserved quantities c ­ A1A2 2 A3A4, d1 ­ I1 2

I3, and d2 ­ I2 2 I4. With their help, Eqs. (1) are
separated into a system of two equations for the ratios
of waves 1 and 2 and waves 3 and 4:
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These equations can be integrated, once the following
transformation of the independent variable z is per-
formed:
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where d ­ fsd1 2 d2d2 1 4jcj2g1/2. The solutions are of
the form
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where D ­ d2 2 d1, and D and E are the constants
of integration, to be found from the boundary condi-
tions. They are the functions of D, jcj2, and ud (the
subscript d means that the quantity is evaluated at
z ­ d). However, ud, as we will show, also depends on
D and jcj2. Thus there are two quantities to be deter-
mined from boundary conditions. This is in contrast
to the TG case, for which only one quantity, jcj2, is to
be determined from boundary conditions. Knowing D
and jcj2 is equivalent to knowing the missing boundary
conditions at the two faces of the crystal.

We assume C3 ­ 0 (the PC condition) to be in force.
This implies that c ­ C2A1d and d1 ­ jC1j2 2 I30 ­
jcj2yjC2j2, and using Eq. (4b) one finds an equation
connecting D and jcj2:≥

jcj2 2 jC1C2j2
¥
jDT 2 dj2 1 4jcj2jC2C4j2jT j2 ­ 0 ,

(5a)

where T ­ tanhsgudd. On the other hand, using an
expression for cp ­ Cp

1 Ap
20 2 Cp

4 Ap
30 and Eq. (4a), one

obtains a quadratic equation for T . The imaginary
part of that equation leads to another relation between
D and jcj2:h
sjcj2 1 jC1C2j2dD2 2 4jcj2jC2C4j2 1 2Djcj2e

i
3 Tr 2 jcj2se 1 Ddd ­ 0 , (5b)

where e ­ jC1j2 1 jC4j2 2 jC2j2 and Tr stands for the
real part of T . Finally, from the equation for I 2:

dI 2ydz ­ 8jQdj2gr expf2grsz 2 ddg , (6)

one obtains an expression relating ud to D and jcj2:
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where gr denotes the real part of g, 2w ­ dysjC2j4 2
jC2j2D 2 jcj2d1/2, and u0 is assumed to be 0.
Thus one solves Eqs. (5a) and (5b) for D and jcj2 and
then evaluates ud, E, and D:

E2 ­ exps2gudd
D 2 d

D 1 d
,

D2 ­ exps2gudd
2jcj2 1 jC2j2sD 1 dd
2jcj2 1 jC2j2sD 2 dd

. (8)

In this manner the solution given by Eqs. (4) is deter-
mined. Also, the missing intensities at z ­ d (or at
z ­ 0) are found:
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One then proceeds to evaluate the four intensities and
phases as functions of u (as in Ref. 5) and, finally, to
solve Eq. (3) for uszd.

One can find the experimentally interesting quanti-
ties without having to go through all the details. For
example, the PC ref lectivity R and the diffraction effi-
ciency D can be found once jcj2 and D are known:
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Fig. 1. Ref lectivity as a function of the coupling strength,
for different arguments of the coupling constant: (a)
argsgd ­ 85±, (b) argsgd ­ 89.9±. The other parameters
are I10 ­ I2d ­ 1 and I40 ­ 0.4, corresponding to an example
considered in Ref. 1.
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Fig. 2. Diffraction efficiency as a function of the frequency
detuning df . Similar curves appear in TG.

Fig. 3. Diffraction efficiency as a function of the detuning
in the transverse case and in TG. The solid curve is for
focused Gaussian beams A10 and A40 and almost f lat A2d
and A3d; the dashed curve is for focused A2d and A3d
and f lat A10 and A40. Parameters I10 ­ 1.15, I2d ­ 0.031,
I40 ­ 1.25, and g0d ­ 24.5 are chosen to correspond to an
experiment reported by MacDonald and Feinberg.6 The
PC beam is seeded with I3d ­ 0.001.

This concludes the solution procedure. We
present some of our results in Figs. 1–3. For
comparison with the known results for the TG,1

we present in Fig. 1 the ref lectivity as a func-
tion of the magnitude and the argument of
the coupling constant g. Qualitatively simi-
lar results are obtained. As the magnitude in-
creases, one notes the appearance of multistability in
the ref lectivity.

As an example, we apply the solution to the
problem of frequency shifts and detunings in PR
oscillators. This is a problem of long history,
some controversy, and considerable difficulty on its
own.6,7 As mentioned above, the detuning causes the
coupling constant to become complex. Although it is
beyond the scope of this Letter to address this problem
in depth, we wanted to see whether, as suggested,6,7

the inclusion of ref lection gratings would change the
picture of spontaneous detuning. One of the problems
in the picture is the appearance of the ref lectivity
as a function of the detuning. Theory based on TG
calculations predicts the existence of two symmetric
peaks about zero detuning, whereas experimental
results display asymmetry and a lateral shift of the
two peaks. Assuming the coupling constant to be of
the form

g ­
g0

1 1 2pitdf
, (11)

where t is the relaxation time constant of the crys-
tal and df is the frequency detuning, we calculate the
diffraction eff iciency using Eq. (10). Typical results
are depicted in Fig. 2. A two-peak structure appears;
however, perfect symmetry and no shift are found.
Plane-wave oscillation pictures of PR oscillators, in ei-
ther TG or RG, cannot resolve the problem of asymme-
try and shift in the ref lectivity of the PC process.

A qualitatively different picture emerges if one takes
into account the transverse spread of beams and al-
lows for (small but necessary) seeding of PC beams.
The inclusion of transverse effects breaks the spa-
tial symmetry that plane-wave analysis enforces on
the process. Taking Gaussian beams, one can intro-
duce curvature mismatch between different beams and
observe changes in the diffraction efficiency. The
equations cannot be solved analytically any more. We
recently presented a numerical procedure for treat-
ing four-wave mixing processes in paraxial approxima-
tion.8 When the procedure is applied to the problem
at hand, asymmetry and shift of the two-peak struc-
ture in either direction appeared. Typical profiles in
the steady state are presented in Fig. 3. In our opin-
ion, any explanation of the problem of spontaneous fre-
quency detuning of PC beams in PR oscillators must
include transverse effects.
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