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a b s t r a c t

We consider a high-order nonlinear Schrödinger equation with competing cubic–quintic–septic non-
linearities, non-Kerr quintic nonlinearity, self-steepening, and self-frequency shift. The model describes
the propagation of ultrashort (femtosecond) optical pulses in highly nonlinear optical fibers. A new
ansatz is adopted to obtain nonlinear chirp associated with the propagating femtosecond soliton pulses.
It is shown that the resultant elliptic equation of the problem is of high order, contains several new terms
and is more general than the earlier reported results, thus providing a systematic way to find exact
chirped soliton solutions of the septic model. Novel soliton solutions, including chirped bright, dark, kink
and fractional-transform soliton solutions are obtained for special choices of parameters. Furthermore,
we present the parameter domains in which these optical solitons exist. The nonlinear chirp associated
with each of the solitonic solutions is also determined. It is shown that the chirping is proportional to the
intensity of the wave and depends on higher-order nonlinearities. Of special interest is the soliton so-
lution of the bright and dark type, determined for the general case when all coefficients in the equation
have nonzero values. These results can be useful for possible chirped-soliton-based applications of highly
nonlinear optical fiber systems.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Propagation of soliton pulses in nonlinear media has drawn
considerable attention in a range of physical settings, such as
plasma physics [1,2], fluid dynamics [3], fiber-optic communica-
tions and photonics [4,5], Bose–Einstein condensates [6–8], and
nuclear physics [9]. Two different types of envelope solitons,
bright and dark, can propagate in nonlinear dispersive media [10].
The unique property of optical solitons, either bright or dark, is
their particle-like behavior in interaction [11].

In nonlinear optics, the nonlinear Schrödinger (NLS) equation is
a generic model for describing the dynamics of light pulses in Kerr
nonlinear media. For picosecond light pulses, the NLS equation
includes only the group velocity dispersion (GVD) and the self-
phase modulation, well known in fibers, and it admits bright and
dark soliton-type pulse propagation in anomalous and normal
dispersion regimes, respectively [12]. The possibility of bright
(dark) solitons in optical fibers is due to the exact counter-
balancing between the effects of anomalous (normal) group ve-
locity dispersion and self-phase modulation [13]. These optical
structures have been studied extensively, both experimentally and
theoretically [14–21].

However, modeling the propagation of subpicosecond optical
pulses in highly nonlinear fibers requires the use of a higher-order
nonlinear Schrödinger (HNLS) equation. For example, at high light
intensities, the NLS equation should also include the χ ( )5 non-
linearity (cubic–quintic medium) [22]. In general a self-defocusing
fifth-order susceptibility χ ( )5 is needed to account for the satura-
tion of χ ( )3 [23]. The nonlinearity arising due to fifth order sus-
ceptibility can be obtained in many optical materials, such as
semiconductors, semiconductor doped glasses, polydiacctylene
toluene sulfonate (PTS), calcogenide glasses, and some transparent
organic materials [24]. However, when the saturation is very
strong, a self-focusing χ ( )7 is also needed [23]. It is interesting to
note that the experimental measurements of fifth- and seventh-
order nonlinearities of several glasses using the spectrally resolved
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two-beam coupling technique has been reported in Ref. [25]. The
competition between the three types of cubic, quintic and septic
nonlinearity in a material can drastically modify its behavior and
the dynamic properties and existence of soliton pulses. In recent
years attention has turned to the investigation of chirped solitons
propagation in nonlinear dynamical systems. Applications of such
objects include pulse compression or amplification, optical pulse
compressors, and solitary-wave-based communication links
[26,27].

Finding exact chirped solitonlike solutions to NLS-type models
is one of the essential tasks of nonlinear optics. Such localized
structures offer a rich platform for studying propagation proper-
ties of optical pulses in various nonlinear materials. However,
much of it is confined to Kerr nonlinearity in the equations and
pulses with linear chirp. Hmurcik and Kaup [28] have investigated
the pulse with linear chirp and a hyperbolic-secant amplitude
profile numerically. In the context of a nonlinear chirp, the authors
of Refs. [29,30] solved the NLS equation with self-steepening and
self-frequency shift effects and obtained solitonlike solutions with
nonlinear chirp. Recently, Alka et al. [31] found chirped soliton
solutions with quintic nonlinearity term added to the NLS equa-
tion with self-steepening and self-frequency shift. Bright and dark
traveling and solitary chirped waves in a three-dimensional
medium with all three nonlinearities present – cubic, quintic and
septic – have been found in [32].

The objective of this paper is to investigate the chirped soliton
propagation for the HNLS equation under the influence of the
cubic–quintic–septic and non-Kerr quintic nonlinearities. In-
vestigation of femtosecond pulse propagation in media with
higher-order Kerr nonlinear response, which is highly intensity
dependent, is needed to understand diverse nonlinear phenomena
arising in some applications (e.g., ultrafast optical switching). Here,
we derive families of chirped solitonlike solutions for the HNLS
equation, by adopting a nonlinear chirping ansatz which differs
from that used in Ref. [31]. We further derive the corresponding
chirp associated with each of these families. Furthermore, we
present the parameter domains in which the chirped solutions
exist.

The paper is organized as follows: the model of equation with
cubic–quintic–septic nonlinearities, which describes the envelope
soliton propagation in non-Kerr media with high-order non-
linearities is presented in Section 2. The nonlinear chirp ansatz
that is used to determine the chirping associated with propagating
femtosecond soliton pulses is also introduced. In Section 3, fa-
milies of chirped solitonlike solutions have been found under
certain parametric conditions. The corresponding chirp associated
with each of these families is also determined. The exact chirped
soliton solution for the considered model is also determined in the
general case where there are no constraints on the number of
parameters. Finally, we summarize our findings in Section 4.
2. Governing equation

The HNLS equation with non-Kerr nonlinear terms and cubic–
quintic–septic nonlinearities, modeling the propagation of an ul-
trashort femtosecond optical pulses can be written in the form

( ) ( )
( ) ( )+ + | | + | | + | | + | | + | |

+ | | + | | = ( )
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where ( )E z t, is the complex envelope of the electric field, a1, a5
and a6 are parameters related to group velocity dispersion (GVD),
self-steepening, and self-frequency shift, respectively. The terms
related to the coefficients a2, a3 and a4 represent the cubic, quintic
and septic nonlinearities of the medium, respectively. The
parameter a7 and a8 account for the quintic non-Kerr nonlinearity
terms.

Model (1) combining the cubic, quintic and septic non-
linearities can be used, for instance, in the description of the
propagation of ultrashort optical pulses in highly nonlinear media.
Unlike the NLS equation, this model with higher-order nonlinear
terms is not integrable in general. Obviously, when the last six
terms of Eq. (1) can be neglected, the equation reduces to the
standard NLS equation, which describes the propagation of pico-
second pulses in standard optical fibers, applicable for instance in
the context of optical communications. Recently, the model in Eq.
(1) without the septic nonlinear term [i.e., =a 04 ] but including
the third-order and fourth-order dispersions was used to in-
vestigate the modulation instability (MI) phenomenon in optical
fibers [24], and in searching for multipole solitary wave solutions
[33]. In Ref. [23], the effects of septic nonlinearity on the MI
phenomenon were studied within the framework of Eq. (1) when
the third-order and fourth-order dispersions are considered. Fur-
thermore, the dark-in-the-bright solution, also called the dipole
soliton of the HNLS equation (1), including the third-order dis-
persion, has been presented recently in the limit =a 04 [34]. In
addition, wave solutions for the NLS equation with polynomial and
triple power law nonlinearities have been obtained in [32,35–38].

Notice that the model (1) constitutes an extension of the
equation adopted in Ref. [31], where solitonlike dark (bright) so-
litons and double-kink solitons solutions with nonlinear chirp
have been obtained under certain parametric conditions. In par-
ticular, the non-Kerr nonlinear terms, (| | )ia E E t7

4 and (| | )ia E E t8
4 ,

which did not appear in Ref. [31], emerge along with the septic
nonlinearity term | |a E E.4

6 Here, for the first time to our knowledge,
we consider the effect of septic nonlinearity and quintic non-Kerr
terms and obtain chirped soliton solutions with a different form of
nonlinear chirping.

We start from the representation of the complex field in the
form [31]:

ρ ξ( ) = ( ) ( )χ ξ[ ( )− ]E z t e, , 2i kz

where ρ and χ are real functions of the traveling coordinate
ξ = −t uz. Here u is given in terms of the group velocity of the
wave packet as =u v1/ . The corresponding chirp is given by
δω χ ξ χ ξ( ) = − [ ( ) − ] = − ′( )∂

∂t z kz,
t

.
Substituting Eq. (2) into Eq. (1) and separating the real and

imaginary parts lead to
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To solve these coupled equations, we introduce the ansatz

χ αρ βρ γ′ = + + ( ). 54 2

where α and β are the nonlinear chirp parameters, and γ is the
constant chirp. Accordingly, the resultant chirp consisting of linear
and nonlinear contributions can be obtained as

δω αρ βρ γ( ) = − ( + + ) ( )t z, 64 2

The substitution of ansatz (5) into Eq. (4) yields three algebraic
equations that define the chirp parameters:

α β γ= − + = − + =
( )
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Eq. (6) together with (7) is an important result; it shows that
the chirping is expressed in powers of intensity I of the light pulse
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(where ρ= | | =I E 2 2) as: δω α β γ( ) = − ( + + )t z I I, 2 , and therefore its
expression is different from that of the cubic–quintic NLS model
considered in Ref. [31], in which only the two last terms are in-
volved. This novel form of the phase possesses two intensity de-
pendent chirping terms in addition to the simplest linear con-
tribution. Note that these two terms appear due to higher-order
nonlinearities and crucially affect the pulse dynamics. It follows
from Eq. (6) that when higher-order nonlinearities manifest
themselves in a material with higher-order nonlinear suscept-
ibilities, the chirping associated with optical pulses is generally a
nonlinear function of the intensity of the wave. We will show that
the intensity dependence of δω plays an important role in the
investigation of chirped femtosecond pulse propagation in higher-
order nonlinear media.

Now, using Eqs. (5) and (7) in Eq. (3), we obtain
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Eq. (8) is an elliptic-type differential equation. Generally
speaking, it is difficult to give the general solution of Eq. (8) when
all the coefficients have nonzero values. Notice that in the parti-
cular case where = =b b 01 2 , one finds chirped dark (bright) so-
litons and double-kink solitons of the cubic–quintic nonlinear
Schrödinger equation with self-steepening and self-frequency
shift, as presented in Ref. [31]. This means that the types of chirped
solitonlike solutions presented here have a more general form
than those in the earlier report [31]. Importantly, the presence of
the parameters b1 and b2 permits the elliptic equation (8) to de-
scribe the features of chirped femtosecond solitons in the cubic–
quintic–septic nonlinear Schrödinger equation with self-steepen-
ing, self-frequency shift, and non-Kerr quintic nonlinearities.
3. Chirped soliton-like solutions

In what follows, we present various chirped solitonlike solu-
tions of the septic model (1), for different parameter conditions.
Before discussing exact solutions to the elliptic equation (8), let us
rewrite it in a more simplified form. Multiplying (8) by ρ′ and
integrating with respect to ξ, we get

( )ρ ρ ρ ρ ρ ρ′ + + + + + + = ( )
b b b b

b b
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where b6 is an integration constant. The change of variable for the
field amplitude

ρ ξ ξ( ) = ( ) ( )F 11

transforms Eq. (10) into the following new auxiliary elliptic
equation:

ξ
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1. This equation is much simpler than Eq. (10), so we
now turn attention to solving the problem within the framework
of this equation. The latter describes different types of envelope
solutions, including soliton solutions, kink and antikink solutions,
periodic and exponential solutions. Here, we are interested in the
solitonlike solutions of this elliptic equation.

For Eq. (12), some restrictive special solutions of the bright,
dark and solitonlike types have been obtained before. Notably,
Yomba [39] presented some soliton solutions to the elliptic
equation (12) in the particular case where = = =c c c 01 3 5 . Ad-
ditionally, a number of solitonlike solutions have been listed in
[39,40] when = = =c c c 01 5 6 in (12). But there exist no known
exact analytical soliton solutions to Eq. (12) with ≠c 0i in the lit-
erature. Here, for the first time to our knowledge, we present exact
soliton solutions to the elliptic Eq. (12) in the general case when all
the coefficients have nonzero values. This allows us to find chirped
soliton solutions propagating in non-Kerr media with competing
cubic–quintic–septic nonlinearity.

We first discuss some interesting specific cases for which some
of the ci coefficients in (12) are equal to 0. We start with the case
where =c 01 [i.e., the integration constant b6 equal to zero], =c 03

[i.e., the cubic term is related to self-steepening term], and =c 05

[i.e., the septic term is related to self-steepening, self-frequency
shift, and quintic non-Kerr terms]. Importantly, the case

= = =c c c 01 3 5 (or equivalently = = =b b b 02 4 6 ) leads to the fol-
lowing three families of soliton solutions of the model equation
(1):

(i) For >c 02 [i.e., <b 05 ], which implies < −k u
a4

2

1
, one obtains a

bright soliton solution of (12) of the form [39]
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where ϵ = ± 1. Substituting (13) along with relation (11) into (2),
we obtain a bright soliton solution of the form:
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The corresponding chirping is given by
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As seen, the first two terms in Eq. (15) denote the nonlinear chirp
that results from the quintic non-Kerr nonlinearity, self-steepen-
ing, and self-frequency-shift, while the last term accounts for the
linear chirp.

Since >c 0,2 we require ( − ) <c c c c 04 4
2

2 6 for the soliton solu-
tion (14) and the chirp (15) to exist. This leads to the constraint
condition ( − ) >b b b b5 9 03 3

2
1 5 . We also have the restriction that

= = =b b b 0.2 4 6 These constraint conditions represent the strict
balances among non-Kerr nonlinearity, cubic–quintic–septic non-
linearities, self-steepening, and delayed nonlinear response
effects.

Fig. 1 depicts intensity profile of a typical bright soliton for the
following values of the model parameters: =a 1.60011 ,

= −a 2.68852 , =a 0.11644 , =a 0.308145 , =a 0.766046 , =a 0.0117 ,
= −k 150.2856. To make = =b b 02 4 , we set = −u 27.9215 and
=a 0.300898 . Furthermore, to make ( − ) >b b b b5 9 03 3

2
1 5 we set

=a 1.2183 . The corresponding chirping for the bright soliton is
shown in Fig. 2 for z¼0.



Fig. 1. Intensity profile of the soliton solution given by Eq. (14) at z¼0 for the
values mentioned in the text.

Fig. 2. Chirping profile for the bright soliton plotted in Fig. 1.

Fig. 3. Intensity profile of the soliton solution given by Eq. (17) at z¼0 for the
values mentioned in the text.

Fig. 4. Chirping profile for the bright soliton plotted in Fig. 3.
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(ii) For >c 02 and Δ = − >c c c4 04
2

2 6 [i.e., <b 05 and

>b b b
3
2 36

5
1 5 ], one finds another bright-soliton-type solution for (12)

of the form [39]
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where ϵ = ± 1. We notice that the imposed conditions

imply that one must have < −k u
a4

2

1
and
[( − ) − ( + )( − )] > ( + )( − )( + )a a ua a a a a a a a a ka u16 8 2 3 2 5 4 4 41 3 7 6 5 6 5 2 64
5 7 8 7 8 1 2 .

Then, substituting solution (16) along with relation (11) into (2), we
obtain another bright-type soliton solution of (1) in the form

( )( )Δ
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for which the chirping is given by
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The intensity profile of this kind of bright soliton is shown in Fig. 3.
Here we have used the model parameters are =a 1.60011 ,

= −a 2.68852 , =a 0.11644 , =a 0.308145 , =a 0.766046 , =a 0.0117 ,
= −k 150.2856, = −u 27.9215 and =a 0.300898 . To make

>b b b
3
2 36

5
1 5 , we set =a 2.363 . We also display the corresponding pulse

chirp in Fig. 4.
(iii) For >c 02 and Δ = − =c c c4 04

2
2 6 [i.e., <b 05 and

=b b b
3
2 36

5
1 5 ], Eq. (12) admits a kink-type solution of the form [39]
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where ϵ = ± 1. Then, substituting solution (19) along with relation
(11) into (2), we have a chirped kink type soliton solution of (1) as
follows
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If we insert solution (19) along with relation (11) into (6), we find
that the chirping is given by
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β γ
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Here, the requirement that <b 05 and =b b b
3
2 36

5
1 5 translate into

restrictions on the model coefficients, namely < −k u
a4

2

1
and



Fig. 5. Intensity profile of the soliton solution given by Eq. (20) at z¼0 for the
values mentioned in the text.

Fig. 6. Chirping profile for the kink soliton plotted in Fig. 5.

Fig. 7. Intensity profile of the soliton solution given by Eq. (23) at z¼0 for the
values mentioned in the text.
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[( − ) − ( + )( − )]

= ( + )( − )( + )

a a ua a a a a

a a a a ka u

16 8 2 3 2

5 4 4 4
1 3 7 6 5 6 5

2

64
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2

. Also, one must require
Fig. 8. Chirping profile for the bright soliton plotted in Fig. 7.
<c 04 [i.e., >b 03 ] for the solution (20) and its corresponding
nonlinear chirp (21) to exist, since >c 02 .

Fig. 5 shows intensity profile of a typical kink solution. The
values of the parameters are =a 1.60011 , = −a 2.68852 ,

=a 0.11644 , =a 0.308145 , =a 0.766046 , =a 0.0117 ,
= −k 150.2856, = −u 27.9215 and =a 0.300898 . To make

=b b b
3
2 36

5
1 5 , we set =a 2.33283 . Fig. 6 illustrates the chirp associated

with this soliton solution.
Next, we study exact solitonlike solutions to the elliptic equa-

tion (12) in the limiting case = = =c c c 0.1 5 6 This leads to the
condition = = =b b b 01 2 6 . For this case, Eq. (12) possesses an exact
soliton solution of the form

( )
( )

ξ
ξ

ξ
( ) =

− − ( )
F

c c

c c c c c

2 sech

4 sech
,

22

2 2

3
2

2 4 3 2

with >c 02 and − >c c c4 03
2

2 4 . Note that this solution was found
earlier by Sirendaoreji and Jiong [40]. By inserting this expression
into (2) and using (11), we obtain a bright-type soliton solution of
(1) in the form

( )
( )( )

( )
( ) =

−

− − − ( )

χ ξ[ ( )− ]

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟E z t

c c t uz

c c c c c t uz
e,

2 sech

4 sech
.

23

i kz2 2

3
2

2 4 3 2

1/2
This solution is valid only if >c 02 and − >c c c4 03
2

2 4 , or equivalently

we have the restrictions that <b 05 and >b b b4
2 16

3 3 5. In terms of the

model coefficients, we find that this solution exists when < −k u
a4

2

1
and

( − ) > [( − ) − ( + )( − )]

( + )

a a ua a a ua a a a a

ka u

2 16 8 2 3 2

4

1 2 5
2 1

3 1 3 7 6 5 6 5

1
2

.

The associated chirp takes the expression:

( )

( )

( )

( )

δω α
ξ

ξ

β ξ

ξ
γ

( ) = −
− −

−
− −

−
( )

⎛
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⎞

⎠
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c c

c c c c c
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c c c c c

,
2 sech

4 sech

2 sech

4 sech 24

2 2

3
2
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2

2 2

3
2

2 4 3 2

Fig. 7 presents the intensity profile of a typical bright soliton for
parameter values: =a 1.60011 , = −a 2.68852 , =a 0.323 ,

=a 0.308145 , =a 0.766046 , = −k 141.8290, = −u 30.1280, and
= −a 0.0247.7 To make =b 01 , we set = −a 0.0061758 . Further-

more, to make =b 02 we set = −a 0.00472.4 The corresponding
pulse chirp obtained for the same values of parameters is shown in
Fig. 8.

It is physically interesting to investigate other forms of kink
solution of the septic model (1), for special choices of parameters.
Here we discuss this type of pulse envelope by setting

= = =c c c 01 3 5 in Eq. (12). The main reason for pursuing such a
goal would be the possible applications of this type of solitonic
solutions to long-distance optical communication systems, taking
advantage of their particular properties. In this case, if we use the
change of variable =F u2 , the wave function ξ( )u satisfies the
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following nonlinear ordinary differential equation:

( )′ = + + ( )u c u c u c u4 4 4 . 25
2

6
4

4
3

2
2

Using a fractional transformation [41]

ξ ξ
ξ

( ) = + ( )
+ ( ) ( )

u
A Bf m

Df m
,

1 , 26

brings solutions in the rational form, where A, B and D are real
constants, and ξ( )f m, is a Jacobi elliptic function, with the mod-
ulus parameter m.

Here we focus on wave solutions of the form ξ ξ( ) = ( )f m m, sn , ,
where ξ( )msn , is the Jacobi elliptic sine function. If we insert so-
lution (26) into (25), we obtain

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

ξ ξ ξ
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ξ
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ξ
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sn sn 3 sn
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2 sn 4 sn 0. 27

2 2 2 2 2 4

6
4 4 4 3 3 3

2 2 2

4
3 3 3 2 2 2

3 3 4 2 3

2 2

2
2 2 2 2 2 2

2 2 4 2 3 2
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Matching the coefficients of different powers of sn function, one
obtains

( − ) − − − = ( )B AD c A c A c A4 4 4 0, 282
6

4
4

3
2

2

+ ( + ) + ( + ) = ( )c A B c A B A D c AB A D4 3 2 0, 296
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4
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c B A D ABD

1 24 12
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4
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Solving the above equations one gets

λ= ( )B D, 33

where
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under the condition: λ λ λ λ[ + + ][ + + ] = ( − )A c A c A c c c c A m16 2 2 6 2 4 2 6 2 4 2 4 2.
From these results, one can write the new exact periodic wave
solution of Eq. (1) as

ξ
ξ

( ) = + ( )
+ ( ) ( )

χ ξ[ ( )− ]
⎛
⎝⎜

⎞
⎠⎟E z t

A B
D

e,
sn

1 sn
,

36
i kz

1/4

When →m 1, then ξ ξ( ) = ( )sn tanh and the solution (36) becomes a
kink-type solution of the form

ξ
ξ

( ) = + ( )
+ ( ) ( )

χ ξ[ ( )− ]
⎛
⎝⎜

⎞
⎠⎟E z t

A B
D

e,
tanh

1 tanh
,

37
i kz

1/4

where the constants A, B, and D are given by relations (33)–(35),
with modulus parameter m¼1. It is important to notice that the
kink solution (37) may approach nonzero value when the ξ vari-
able approaches infinity. Such envelope solution cannot exist in
the cubic NLS equation.

The accompanying chirping is given by

δω α ξ
ξ

β ξ
ξ

γ( ) = − + ( )
+ ( )
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−
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⎛
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A B
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tanh
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tanh

1 tanh
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38

1/2

provided that = = =c c c 01 3 5 , or equivalently the constants
= = =b b b 02 4 6 .
Let us now consider the most general case when all the ci

coefficients in (12) have nonzero values. This is an important case,
in which the competing cubic–quintic–septic nonlinearities and
non-Kerr terms act jointly with the self-steepening and self-fre-
quency shift, taken at the lowest order. Here, in the general case,
we have to solve Eq. (12) without setting the ci coefficients to zero.
To this end, we introduce the following ansatz for ξ( )F :

ξ ηξ( ) = + ( ) ( )F a b sech , 391/2

where a, b and η are unknown parameters to be determined.
Substituting the ansatz, Eq. (39) into Eq. (12) we obtain
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Equating the powers of sech we obtain the conditions
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Solving the algebraic equations obtained above, one finds
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with the condition on parameters

− + ( − ) + = ( )c c c c c c c c c c c c8 24 6 2 6 0. 504 5
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By substituting solution (39) along with relation (11) into (2), we
obtain an exact chirped soliton solution of (1) in the form

( )( )η( ) = + ( − ) ( )
χ ξ[ ( )− ]E z t a b t uz e, sech , 51

i kz1/2 1/2

where the parameters a, b and η are determined using Eqs. (47)–
(49).

It is easy to see that the soliton solution (51) can have either
bright or dark intensity profiles that uniquely depend on the signs
of the parameters a and b. When >a 0 and >b 0, this solution will
be of the bright type. However, if one or both of these parameters
have negative values, the solution will be of the dark-type. The
main property of this soliton solution is that it has a characteristic
platform underneath it. The chirping corresponding to this solu-
tion is given by

( )( )
( )

δω α η

β η γ

( ) = − + ( − )

− ( + ( − ) ) − ( )

t z a b t uz

a b t uz

, sech

sech . 52

1/2 2

1/2

Because parameter η needs to be positive for the existence
of soliton solution (51) and its corresponding chirping (52),
one must choose the parameters ci to satisfy

( + − − ) >c c c c c c c c c c30 216 5 108 06
3

4 6 5
2

2 6
3

5
4

3 5 6
2 , as it follows from

(49). At the same time, for the existence of this exact soliton so-
lution, the constraint (50) must be satisfied. Hence, for the general
case, the relationship among the parameters is much more
complicated.

Finally, we mention that other types of complex localized
structures, such as the nonfundamental soliton structures (e.g.,
dipoles and multipoles), can be supported by the higher-order
nonlinearities. We have also found that these pulses are possible in
a more complex model of the HNLS equation, which involves both
of high-order dispersion (e.g., third- and fourth-order dispersions)
and nonlinear effects [33,42]. We note in passing that for a high-
order nonlinear class of systems, an experiment has recently been
reported in glassy materials, such as chalcogenide glass, which
exhibits both of third-, fifth-, and seventh-order nonlinearities
[43].
4. Conclusion

In this paper, we have obtained exact chirped soliton solutions
of a higher-order nonlinear Schrödinger equation, modeling the
propagation of an ultrashort femtosecond optical pulses. The
model used combines cubic, quintic and septic nonlinearities, non-
Kerr nonlinear terms, as well as self-steepening and self-frequency
shift. After introducing a new ansatz that includes a novel form of
chirping, the solutions were investigated within the framework of
a general elliptic equation involving many parameters. This allows
finding a rich set of chirped soliton solutions for the governing
equation. These optical pulses exhibit explicitly a nonlinear chirp
that arises from higher-order nonlinear effects, and differs from
that in Ref. [31] in having an additional highly intensity-dependent
term. The existence domain for the chirped soliton solutions has
been found in the HNLS equation parameter set. Furthermore, a
new ansatz is introduced for the construction of exact chirped
soliton solution for the higher order wave equation without any
constraints on the parameters of the resultant elliptic equation.
The obtained results show that the interplay between higher-or-
der nonlinearities and non-Kerr terms leads to new interesting
chirped soliton solutions. These chirped femtosecond solitons may
find straightforward applications in higher-order nonlinear fiber
systems, wherein the effect of cubic–quintic–septic nonlinearities
as well as of quintic non-Kerr terms should be included.

We intend to extend our study of the cubic–quintic–septic
nonlinear Schrödinger equation with non-Kerr terms to the same
model containing distributed coefficients, to see how the variation
of dispersion and nonlinearity along the propagation direction of
the fiber affects the nonlinear chirp associated with solitonic so-
lutions. Such a study would be very important, as the generalized
nonlinear Schrödinger equation with varying dispersion and
nonlinearity is required for describing dispersion-management or
soliton control. Possible extension to coupled nonlinear Schrö-
dinger equations would also be interesting, because such models
have found applications in various settings, especially in nonlinear
optics and in the dynamics of Bose–Einstein condensates.
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