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Abstract Two-dimensional parity-time (PT) sym-
metric potentials are introduced, which allow the
existence of spatial solitons in the model of the
strongly nonlocal nonlinear Schrödinger equation.
Two-dimensional accessible solitons are found in the
form of solutions separating the radial amplitude,
given in terms of Laguerre polynomials, a phase
function involving quadratic, linear, and constant
phase shifts, and a specific azimuthal modulation
function. Shape-preserving solitons are constructed
from Laguerre–Gaussian functions containing the
self-similar variable and an exponential form of the az-
imuthal modulation, containing sine and cosine func-
tions, when a suitable PT-symmetric potential is cho-
sen. Interesting soliton profiles and the corresponding
PT-symmetric potentials are displayed for different
values of the parameters.
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1 Introduction

In the past decade, beam propagation in optical me-
dia with parity-time (PT) symmetry has been widely
studied, both theoretically and experimentally [1–3].
The motivation came from the initial ideas of general-
ization of quantum mechanics, suggested by Bender et
al. [4, 5], with PT-symmetric complex potentials [2].
Coupling the parity symmetry (P̂ ) with the time rever-
sal symmetry (T̂ ) has produced a wide class of non-
Hermitian Hamiltonian systems that have drawn sig-
nificant attention: similar to traditional quantum me-
chanics; these non-Hermitian Hamiltonians still pos-
sess real eigenvalue spectra [5] and may have physical
meaning. This has stimulated a series of applications
of PT symmetry in various areas of physics, ranging
from PT-symmetric harmonic and anharmonic oscil-
lators, linear and nonlinear optics, to quantum field
theory [5–15]. An increased interest in PT-symmetric
systems has been generated, because of the unex-
pected physical properties, such as double refraction,
phase transition, and the appearance of curious opti-
cal solitons [1, 6, 9, 10]. On the topic of solitons in
PT-symmetric systems, Musslimani et al. [9] have
studied localized beam solutions in PT-periodic po-
tentials. The necessary condition of a Hamiltonian to
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possess PT symmetry has also been pointed out in
their research work: the real part of a PT complex po-
tential has to be an even function of position, whereas
the imaginary part of that potential has to be an odd
function of position. Applications of PT-symmetry to
linear and nonlinear lattices have been undertaken in
[11–13], to double-channel waveguides in [14], and to
nonlocal nonlinearity in [15].

Optical spatial solitons [16] in nonlocal nonlin-
ear (NNL) media have also received much attention
lately [17–23], due to their rich potential for applica-
tions, such as photonic switching, all-optical switch-
ing and logic gating, and all optical signal processing.
Optical spatial solitons are self-trapped optical beams
that exist by virtue of the balance between diffraction
and nonlinearity. The propagation of optical beams
in NNL media is modeled by the NNL Schrödinger
(NNLS) equation [17, 20]. Snyder and Mitchell [17]
have simplified the NNLS equation in the case of
strongly nonlocal media to a linear model, named
the Snyder–Mitchell model, and they found an exact
Gaussian-shaped solution, called the accessible soliton
[17, 18]. Subsequently, Assanto et al. have observed
accessible solitons in nematic liquid crystals (NLCs)
[19, 20], called them nematicons, and proved theo-
retically [19] and experimentally [20] that NLCs in-
deed are some of the strongly NNL materials. Various
phenomena connected with the propagation of three-
dimensional (3D) solitons in NNL media have been
addressed in [21–23]. We have also studied two- and
three-dimensional NNLS equation in strongly NNL
media [24–27], and obtained exact solutions in terms
of 2D Laguerre–Gaussian soliton family [24], as well
as Whittaker and Hermite–Gaussian functions [25];
we also found 2D and 3D optical vortex and necklace
solitons in highly NNL media [26, 27].

In the present paper, we study 2D NNLS equa-
tion in the strongly NNL media with suitably cho-
sen PT-symmetric potentials. The Laguerre–Gaussian
solitons are constructed analytically, and we find that
these solitons display many new interesting features.
We utilize a two-dimensional PT-symmetric potential
whose real part is an even function of the azimuthal
angle and the imaginary part is an odd function of the
azimuthal angle. Two-dimensional accessible solitons
are found in the form of solutions separating the vari-
ables. These solitons are constructed using Laguerre
polynomials, given in terms of the self-similar vari-
able, and an exponential form of the azimuthal func-
tion, involving sine and cosine functions. Since our

aim is to display 2D accessible solitons, we choose
by construction the amplitude of the imaginary part
of our PT-symmetric potential an order of magnitude
smaller than the amplitude of the real part. In this man-
ner, we stay away from and do not observe any indica-
tion of a phase transition in our model; our solutions
remain stable and within the same class. The questions
pertaining to the appearance of phase transition and
(in)stability of solutions for larger values of the imag-
inary part will be addressed elsewhere.

The paper is organized as follows. In Sect. 2, the 2D
Snyder–Mitchell model with a PT-symmetric poten-
tial is introduced, and an exact solution is constructed.
In Sect. 3, we illustrate and discuss some examples of
the exact solutions obtained. Section 4 gives the con-
clusion.

2 Model and analytical soliton solutions

In strongly NNL media with a PT-symmetric potential
V (r,ϕ), the 2D optical beam evolution is governed by
the following scaled NNLS equation for the dimen-
sionless light field u(z, r, ϕ) [24, 25]:

i
∂u

∂z
+ 1

2
∇2⊥u − sr2 − V (r,ϕ)u = 0, (1)

where z is the dimensionless propagation distance,
∇2⊥ is the transverse Laplacian, and s is the parameter
depending on the beam power P . Note that P is a con-
stant of motion, equal to the total input power P0. The
second term in Eq. (1) represents the diffraction, the
third term originates from the optical nonlocality, and
the fourth term is the external potential function. To
analyze the effects of PT symmetry on Eq. (1), we in-
troduce the PT-symmetric potential function V (r,ϕ).
When V (r,ϕ) = 0, Eq. (1) is simplified to the general
2D NNLS equation in strongly NNL media [24] repre-
senting a 2D quantum-mechanical harmonic oscillator.
Since the parabolic potential is an even function of r ,
it is the external potential V (r,ϕ) that decides whether
Eq. (1) is PT-symmetric or not. It should also be noted
that the beam collapse cannot occur in Eq. (1) with
real V , because it is a linear equation. However, com-
plex V introduces regions of gain and loss, in which
the solution may grow or attenuate. The condition for
PT-symmetry in Eq. (1) is that [28]

V ∗(r, ϕ + π) = V (r,ϕ). (2)
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We treat Eq. (1) in polar coordinates, by the self-
similar method and the separation of variables, and
consider only the case s > 0. In polar coordinates,

the transverse Laplacian is ∇2⊥ = ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂ϕ2 ,

where r = √
x2 + y2 is the distance from the z axis,

and ϕ is the azimuthal angle. Following [24, 26], we
define the complex field as

u(z, r, ϕ) = A(z, r)Φ(ϕ)eiB(z,r), (3)

where the amplitude A(z, r) and the phase B(z, r) are
real functions of z and r . The azimuthal part of the
solution Φ(ϕ) satisfies the following equation:

1

Φ

∂2Φ

∂ϕ2
= Ω(ϕ), (4)

where Ω(ϕ) �= 0; otherwise Eq. (1) is not a PT-sym-
metric system. Evidently, we may choose PT-symmet-
ric potentials in the form:

V (r,ϕ) = Ω(ϕ)

2r2
, (5)

where Ω(ϕ) should satisfy Eq. (2), namely

Ω∗(ϕ + π) = Ω(ϕ). (6)

Thus, considering the function Ω(ϕ) is equivalent
to considering the PT-symmetric potential V (r,ϕ).
Therefore, we study in some detail the function Ω(ϕ)

in the following text. It is also important to note
that Eq. (6) imposes different constraints on the real
and imaginary components of Ω(ϕ) : ΩR(ϕ + π) =
ΩR(ϕ) and ΩI(ϕ + π) = −ΩI(ϕ). Hence, for the pe-
riodic Ω(ϕ) this means that the periodicity of the two
components has to be different. All along, Eq. (4) must
be satisfied for the azimuthal part Φ(ϕ).

In this paper, we consider the following special so-
lution:

Φ(ϕ) = keiI0 sin[(2m+1)ϕ]+cos(2mϕ), (7)

where the normalization constant

k = 1
√∫ 2π

0 e2 cos(2mϕ) dϕ

,

I0 is the strength of the imaginary part (the strength of
the real part is chosen to be 1), and m (= 0,1,2, . . .)
is a nonnegative integer. Different azimuthal solu-
tions, coming from different choices of the Ω(ϕ) func-
tions, lead to different classes of solitons. Substituting

Eq. (7) into Eq. (4), we find the corresponding Ω(ϕ)

function:

Ω(ϕ) = ΩR(ϕ) + iΩI (ϕ), (8)

with

ΩR(ϕ) = −4m2 cos(2mϕ) − 1

2
(2m + 1)2I 2

0

− 1

2
(2m + 1)2I 2

0 cos
[
2(2m + 1)ϕ

]

+ 4m2 sin2(2mϕ),

ΩI (ϕ) = −4(2m + 1)mI0 cos
[
(2m + 1)ϕ

]
sin(2mϕ)

− (2m + 1)2I0 sin
[
(2m + 1)ϕ

]
.

Evidently, Eq. (8) satisfies the PT-symmetry con-
dition (6). Thus, we pick a form of the azimuthal
part of the solution, consistent with the form for the
PT-symmetric potential function Ω(ϕ) that supports
such a solution through Eq. (4).

Substituting Eq. (3) into Eq. (1) and considering
Eq. (5), one requires that the real and imaginary parts
of each term be separately equal to zero. In this man-
ner, one obtains a set of coupled equations for A

and B:

1

A

∂A

∂z
+ 1

A

∂A

∂r

∂B

∂r
+ 1

2

∂2B

∂r2
+ 1

2r

∂B

∂r
= 0, (9a)

−∂B

∂z
+ 1

2A

∂2A

∂r2
− 1

2

(
∂B

∂r

)2

+ 1

2rA

∂A

∂r
− sr2 = 0.

(9b)

We search for the self-similar solution of Eqs. (9a)
and (9b); to this end, we presume the following form
of the solutions [24, 25]: A = 1

w(z)
F (θ) and B(z, r) =

a(z)r2 + b(z)r + c(z), with clear meaning of the
parameter functions. Here, w(z) is the beam width,
θ(z, r) is the self-similar variable, and a(z), b(z), c(z)

are the quadratic, linear, and constant parameter func-
tions of the phase. They are all allowed to vary with
the propagation distance z. Inserting these transfor-
mations into Eq. (9a), and making the coefficients of
each power of r equal to zero, we obtain the follow-
ing conditions on the self-similar variable and the pa-

rameter functions: θ(z, r) = r2

w2(z)
, b(z) = 0, and a =

1
2w

dw
dz

. By using these conditions, a nonlinear differen-
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tial equation for F(θ) is readily derived from Eq. (9b),

θ

F

∂2F

∂θ2
+ 1

F

∂F

∂θ
− w3θ

4

d2w

dz2
− w2

2

dc

dz
− 1

2
sw4θ = 0.

(10)

After another functional transformation F(θ) =
e− θ

2 f (θ), Eq. (10) is brought to

θ
d2f

dθ2
+ (1 − θ)

df

dθ
+

[(
1

4
− w3

4

d2w

dz2
− 1

2
sw4

)
θ

− w2

2

dc

dz
− 1

2

]
f = 0. (11)

It is possible to further simplify Eq. (11), with the
choices:

1

4
− w3

4

d2w

dz2
− 1

2
sw4 = 0, (12a)

−w2

2

dc

dz
− 1

2
= n, (12b)

where n is chosen as a real nonnegative integer. These
changes turn Eq. (11) into

θ
d2f

dθ2
+ (1 − θ)

df

dθ
+ nf = 0, (13)

which is the well-known Laguerre differential equa-
tion, whose solutions are the Laguerre polynomi-
als [29], namely f (θ) = Ln(θ).

Here, we consider only solutions with constant
width. When w = w0, we find that the beam is a shape-
preserving accessible soliton [16, 24, 26]. In that case,
from Eqs. (12a) and (12b), it follows that the pa-
rameter functions can be deduced as s = 1

2w4
0
, c(z) =

− 2n+1
w2

0
z + c0, and a = 0. Thus, a linear growth in z of

the phase shift is noted, which is a usual occurrence in
transversely localized beams possessing propagation
constants. Collecting the above results, we get the fol-
lowing particular soliton solution of Eq. (1):

unm(z, r,φ)

= k

w0
Ln

(
r2

w2
0

)

× e
− r2

2w2
0
+cos(2mφ)+iI0 sin[(2m+1)φ]+i(− 2n+1

w2
0

z+c0)

,
(14)

where k =
√

1/
∫ 2π

0 e2 cos(2mϕ)dϕ. It is straightfor-
ward to see that |u(z, r, ϕ)| vanishes at r → ∞, i.e.,

Eq. (14) represents a localized solitary solution. Ar-
bitrariness in the choice of parameters n and m in-
cluded in the above solution (14) implies that the beam
field u(z, r, ϕ) may possess a rich structure. Thus,
we can conclude that to support the solution (14),
PT-symmetric potential in Eq. (1) has to be in the form
of Eqs. (5), where Ω(ϕ) is given by Eq. (8).

3 Analysis and discussion of results

To better understand the influence of PT-symmetric
potentials on the soliton dynamics, we introduce some
special types of localized solutions for the optical
field expressed by Eq. (14), via suitable selections of
the nonnegative integers n and m. We focus attention
on the distributions of the optical intensity I = |u|2
and discuss the corresponding ΩR(ϕ) and ΩI(ϕ) in
Eq. (8). In that case, there is no z-dependence in the
distributions obtained. In general, the exact expres-
sions for ΩR(ϕ) and ΩI (ϕ) are likely to be of some
unusual and complex form, therefore, we only provide
the graphs of ΩR(ϕ) and ΩI(ϕ). In the following ex-
amples, we further fix the constant w0 = 1.

We first address the case m = 0 and different n.
Because the parameter n is an arbitrary nonnegative
integer, various structures are obtained. If the param-
eter n is chosen as zero, from Eq. (14) we find that
L0(r

2) = 1; the beam then is called the fundamental
soliton, which forms a full circle in the projection on
the x–y plane. Similar excitations have appeared in
our previous work [24]. An example with nonzero n

is presented in Fig. 1(a) for n = 2; the left column de-
picts the distribution of the intensity, while the right
column displays the projection on the x–y plane. Note
that the intensity is nonzero in the white rings and
the central spot, and zero elsewhere. Similarly, we can
construct higher order soliton excitations for larger n,
i.e., for n = 4; the distribution is exhibited in Fig. 1(b).
In general, there exist n (n �= 0) ring layers and a cen-
tral circle for such a soliton. The maximum optical in-
tensity is located at the center.

The real component ΩR and the imaginary compo-
nent ΩI of the corresponding PT-symmetric potential
for the parameter m = 0 given by Eq. (8) are shown in
Fig. 2. Because Ω(ϕ) contains a periodic modulation,
coming from cos(2ϕ) and sin(ϕ), the PT-symmetric
potential shows the periodic sine and cosine structure.
Here, exceptionally, the amplitude |ΩI | > |ΩR|. We
find that when r is small, owing to the impact of the
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Fig. 1 Intensity
distributions (nonzero in
white annuli, zero in other
areas) of the axially
symmetric soliton
structures. Top and bottom
rows display n = 2 and
n = 4 solitons, respectively,
as given by Eq. (14) (Color
figure online)

Fig. 2 The real (left) and imaginary (right) components of Ω(ϕ) from Eq. (8), displayed in the azimuthal angle for different I0. Here
m = 0, and I0 = 0.1,0.15,0.2, respectively (Color figure online)

function 1
r2 , the PT-symmetric potential is large, then

decreases and oscillates rapidly, and in the end tends
to zero with the increase in r .

For n = 0 in Eq. (14), we obtain a radiating
necklace-shaped beam for any positive integer m.
A typical example of such a radiating necklace is
shown in Fig. 3(a) for m = 4, displaying an axisym-
metric radial intensity distribution. The number of ra-
diating petals in the necklace (white regions in the fig-
ure) in the soliton is determined by the integer m;
there exist 2m petals. Actually, the formation of a
radiating necklace beam is the result of the periodic
azimuthal modulation function cos(2mϕ). The corre-
sponding real and imaginary components of Ω(ϕ) are
displayed in Figs. 3(b) and 3(c). It should be noted

that ΩR(ϕ) swings violently from positive to negative
values, while there are relatively small oscillations at
the top (see Fig. 3(b)), whereas ΩI(ϕ) oscillates more
gently between positive and negative values with a
much smaller amplitude. This wide disparity in the
size of real and imaginary components helps under-
stand the absence of phase transition in our system
and the apparent stability of the solutions obtained.

Self-trapped localized structures with a large num-
ber of azimuthal petals and multilayer necklaces may
exhibit a strong effective stabilization in strongly NNL
media [24, 25]. Figures 4 and 5 display the intensity
distribution of multilayer radiating necklace solitons
and the corresponding Ω(ϕ), which exhibit similar
patterns. These examples are obtained for positive in-



W.-P. Zhong et al.

Fig. 3 (a) Intensity distribution of a soliton for n = 0 and m = 4; (b) the corresponding real component ΩR(ϕ), and (c) the imaginary
component ΩI (ϕ) of the PT-symmetric potential, for I0 = 0.1 (Color figure online)

Fig. 4 Multilayer necklace soliton and the corresponding Ω(ϕ). The setup and parameters are as in Fig. 3, except for n = 1 and m = 8
(Color figure online)

Fig. 5 Structure of multilayer necklace soliton and the corresponding Ω(ϕ). The setup is the same as in Fig. 4, except for n = 3 and
m = 10 (Color figure online)

teger values of n and m in Eq. (14). In these solutions,
the necklace structure is formed due to the periodic
azimuthal modulation. Note that these solitons form
multilayered structures, with the outer necklaces more
strongly modulated than the inner counterparts; there
exist larger white necklaces in the outer rings than in
the inner.

Interesting structures are seen in Figs. 4 and 5.
We find that the larger the parameter m, the larger
the necklace radius. It is seen that the distributions

change regularly with the azimuthal angle. When m is
large enough, the bright spots form a soliton ring (see
Fig. 1). The number of petals in each layer is deter-
mined by m, and the number of layers is determined
by n. These solitons contain 2m(n + 1) white spots
and form n + 1 necklace layers.

Figures 4(b), (c) and 5(b), (c) illustrate similar
structures of the corresponding Ω(ϕ) as in Fig. 3. For
larger m, there also appear small oscillations in ΩI (ϕ)

at the bottom (see Figs. 4(c) and 5(c)).
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4 Conclusions

We have introduced a class of self-trapped beam so-
lutions of the nonlinear Schrödinger equation in the
strongly NNL media with PT-symmetric potentials.
A specific class of PT-symmetric potentials is intro-
duced, connected with the choice of the azimuthal part
of the total solution to the NNLS equation, and allow-
ing the existence of solitary solutions. Exact analyti-
cal soliton solutions are constructed by using the self-
similar method and the separation of variables. The
accessible solitons obtained are stable in propagation
and show no tendency to collapse. These features are
probably the consequence of choosing the imaginary
part of the PT-symmetric potential much smaller than
the real part (except when m = 0), which prevents the
appearance of phase transition in the system and re-
tains the solutions within the same class. We have con-
sidered a simple exponential form containing periodic
sine and cosine functions, to describe the azimuthal
angle part of the total solution. Further possible gen-
eralizations of these results are to consider 3D prob-
lems involving light bullets, and searching for alterna-
tive solutions involving different angular components.
An interesting topic is also to increase the strength I0

of the imaginary component and investigate the emer-
gence of phase transition and instabilities in the solu-
tions.
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