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Abstract Using a similarity transformation, we find
the light bullet solution of (3+ 1)-dimensional nonlin-
ear Schrödinger equation with parity-time (PT) sym-
metric potential. The diffraction/dispersion and non-
linearity coefficients are chosen as longitudinally inho-
mogeneous functions. We demonstrate how intensity,
width, phase, and chirp of the solution aremodulated by
the variation in diffraction/dispersion and by the choice
of PT-potential. Dynamic characteristics of light bullets
inmedia described by exponentially decreasing diffrac-
tion/dispersion and periodicallymodulated systems are
illustrated.
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1 Introduction

Solitons in spatially inhomogeneousmedia have attrac-
ted great attention in the past decade, owing to numer-
ous applications in many areas of physics such as pho-
tonic devices, nonlinear plasmas, fluid dynamics, and
Bose–Einstein condensation (BEC) [1–5]. Recently,
the propagation of localized optical beams in complex
nonlinear media featuring parity-time (PT) symmetry
has become a subject of intense study [6–10].

The PT-symmetry became important in quantum
mechanics whenBender and Boettcher in 1998 showed
that Hamiltonians with such symmetry can have an
entirely real spectrum, although the Hamiltonians are
non-Hermitian [11]. Complex PT-symmetric potentials
require that the real part of the potentialmust be an even
function of position, whereas the imaginary part should
be odd. Another important property of PT-symmetric
system is the existence of a sudden phase transi-
tion known as the spontaneous PT-symmetry breaking,
above which the spectrum ceases to be real.

Nowadays, the properties of solitons in the form of
ultrashort and strong laser pulses are quite well known
[12–14]. Furthermore, in the long-distance commu-
nications and all-optical ultrafast switching devices,
many spatiotemporal localized structures such as opti-
cal solitons [15], similaritons [16], and light bullets
(LBs) [17] have been displayed in nonlinear optics.
However, spatiotemporal localized structures in PT-
symmetric potentials have not been discussed much.
Especially, the 3D solitons in PT-symmetric potentials
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with power-law nonlinearities are hardly reported [18].
This study is undertaken in this paper.

The plan of this paper is as follows. In Sect. 2, we
briefly introduce the generalmodel and obtain a distinct
type of soliton solution. In Sect. 3, the dynamic char-
acteristics of light bullets (LBs), such as their intensity,
width, phase, and chirp in specially designedmedia, are
studied. Numerical simulations and comparison with
the analytical results are performed in the same sec-
tion. In Sect. 4, the conclusion to the paper is outlined
briefly.

2 The model and the soliton solutions

We present here analytical LB solutions to the general
(3 + 1)-dimensional nonlinear Schrödinger equation
(NLSE)

i∂zu + β(z)

2
(∇⊥u + ∂2t u)

+χ(z)|u|2mu + [v(z, r) + iw(z, r)]u = 0 (1)

with the power-law nonlinearity and a PT-symmetric
potential. Here, ∇⊥ = ∂2/∂x2 + ∂2/∂y2 is the trans-
verse Laplacian, r ≡ (x, y, t) is the position vector,
and u(z, r) is the complex envelope of the electric field,
normalized with (k0w0)

−1(n2/n0)−1/2. The longitudi-
nal z, transverse x , y coordinates, and the comoving
time t are, respectively, scaled by the diffraction length
LD ≡ k0w2

0 (with the wave number k0 ≡ 2πn0/λ), the
typical input spatial width w0, and the temporal pulse
width. Functions β(z) and χ(z) denote the diffrac-
tion/dispersion (DD) and the nonlinearity coefficients,
respectively. An even function v(z, r) ≡ k20w

2
0nR(z, r)

and an odd function w(z, r) ≡ k20w
2
0nI (z, r), to be

specified subsequently, are the real and imaginary com-
ponents of the complex PT-symmetric potential, cor-
responding to the index-guiding and the gain or loss
distribution of the optical potential.

To obtain exact analytical solutions of Eq. (1), we
introduce a self-similar transformation of the solution
sought [16,17]:

u(z, r) = A(z)U [X (z, x),Y (z, y),

T (z, t), Z(z)]eiϕ(z,r). (2)

where A(z) is the amplitude; X = X (x, z), Y =
Y (z, y), and T = T (z, t) are the formal self-similar
variables; Z = Z(z) is the effective propagation dis-
tance; and ϕ(z, r) is the phase of the wave, all assumed

to be real functions. Substituting Eq. (2) into Eq. (1),
one obtains the following standardNLSEwith constant
nonlinearity coefficient χ0:

i
∂U

∂Z
+ 1

2

[
∂2U

∂X2 + ∂2U

∂Y 2 + ∂2U

∂T 2

]

+χ0|U |2mU+[V (X,Y, T )+iW (X,Y, T )]U =0,

(3)

with the requirements that:

χ0 = A2m
0 χ(z)

β(z)[1 − s0
∫

β(z)dz]3m−2
, (4a)

V (X,Y, T ) = [1 − s0
∫

β(z)dz]2
β(z)

v(z, r), (4b)

W (X,Y, T ) = [1 − s0
∫

β(z)dz]2
β(z)

w(z, r), (4c)

where A0 and s0 are arbitrary real constants. The
requirement that the new nonlinearity coefficient χ0 is
constant enforces a relation between the nonlinearity
and the DD coefficient, expressed by Eq. (4a). Thus,
in order for the method of solution to be valid and the
prescribed LB solutions obtained, an integrability con-
dition on the method must be imposed, in the form of
Eq. (4a). After some algebra, the simplest particular
solutions are obtained:

A = A0[1 − s0

∫
β(z)dz]3/2,

X (z, x) = x

1 − s0
∫

β(z)dz
, (5a)

Y (z, y) = y

1 − s0
∫

β(z)dz
,

T (z, t) = t

1 − s0
∫

β(z)dz
, (5b)

Z(z) =
∫

β(z)dz

1 − s0
∫

β(z)dz
,

ϕ(z, r) = − s0
(
x2 + y2 + z2

)
2[1 − s0

∫
β(z)dz] . (5c)

Solutions of Eq. (3) can be considered as seeds which
generate various solutions of Eq. (1) via relations (4)
under conditions (5). Therefore, if we substitute solu-
tions of Eq. (3) into transformation (2), nonautonomous
solitons of Eq. (1) can be obtained.

Here, we investigate the localized modes supported
by a 3DPT-symmetric complex potential VPT(X,Y, T )

whose real and imaginary parts are given by:
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V = V0(X
2 + Y 2 + T 2) − V1e

−2a2(X2+Y 2+T 2)

+V2(e
−2a2X2 + e−2a2Y 2 + e−2a2T 2

) (6a)

and:

W = W0(Xe
−a2X2 + Y e−a2Y 2 + T e−a2T 2

), (6b)

which satisfy the properties of PT-symmetry: V (X,Y
, T ) = V (−X,−Y,−T ) andW (X,Y, T )= −W (−X,

−Y,−T ).
We seek a solution of 3D NLSE (3) in the form:

U (Z , X,Y, T ) = ψ(X,Y, T )eiδz+θ(X,Y,T ). (7)

Here, the real-valued functions of phase θ(X,Y, T ) and
amplitudeψ(X,Y, T ) satisfy the following differential
equations:

∇2ψ − |∇θ |2ψ + V (r)ψ + χ0ψ
2m+1 = δψ, (8a)

ψ∇2θ + 2∇θ · ∇ψ + W (r)ψ = 0. (8b)

For potential (6), the above equations possess closed-
form localized solutions that satisfy ψ(X,Y, T ) → 0
when (X,Y, T ) → ±∞. Thus, for the amplitude, we
obtain:

ψ(X,Y, T ) =
∣∣∣∣V1χ0

∣∣∣∣
1
2m

e− a2(X2+Y2+T 2)
m (9a)

while the phase θ(X, Y, T ) is given by:

θ(X,Y, T ) = mW0
√

π

4a3(m + 2)
[Erf(aX) + Erf(aY )

+Erf(aT )]|, (9b)

where Erf(X,Y, Z) is the error function, V0 =
−4a4/m2, V2 = −m2W 2

0 /4a2(m + 2)2, and δ =
−4a4/m.

Fromexpression (2), the components of the complex
PT-potential are given as:

v = β(z)

[1 − s0
∫

β(z)]2 [V0(X2 + Y 2 + T 2)

− V1e
−2a2(X2+Y 2+T 2)

+ V2(e
−2a2X2 + e−2a2Y 2 + e−2a2T 2

)] (10a)

and

w = W0β(z)

[1 − s0
∫

β(z)dz]2 (Xe−a2X2

+Y e−a2Y 2 + T e−a2T 2
). (10b)

The soliton solution of Eq. (1) is thus:

u(z, r) = A0

[1 − s0
∫

β(z)dz]3/2
∣∣∣∣V1χ0

∣∣∣∣
1
2m

e− a2(X2+Y2+T 2)
m +iθ(X,Y,T )+iϕ(z,r)+iδz, (11)

where X , Y , T , and ϕ(t, x, y, z) satisfy Eqs. (5a)–(5c),
respectively. Here, the phase is made up of the phase
θ(X,Y, T ) in solution (9b) and of the chirped phase
ϕ(z, r), expressed by Eq. (5c).

3 The characteristic distributions of solitons

To illustrate the characteristics of the analytic solution
(11), we present the corresponding system manage-
ment schemes in a DD medium (DDM) with decreas-
ing β(z) = β0 exp(−ωz) [19] and in the periodically
modulatedmedium (PMM), β(z) = β0 cos(z) [20], the
choice of which leads to the controlled development of
nonautonomous waves.

From Eqs. (10a) and (10b), one finds that the
complex PT-symmetric potential satisfies v(x, y, t) =
v(−x,−y,−t) and w(x, y, t) = −w(−x,−y,−t).
Thus, the index-guiding and the gain or loss distribu-
tions are even and odd functionswith regard to x, y, and
t . For the complex PT-symmetric potential, the even
and odd properties of v and w are depicted in Fig. 1a,
c and b, d, respectively.

Figure 2 presents the isosurface plots and the inten-
sity distributions of LBs in the x–y plane for DDM, at
different longitudinal distances.One can see that theLB
exhibits a spherical distribution. Moreover, it is found
that the LB profiles are self-similar and that the radii
and the intensities of the pulse become slowly bigger
as the propagation distance increases.

Figures 3a–c show the real part, the imaginary part,
and the phase of the field distribution of the LB in the
x–y plane, with m = 1. One sees that the real part

Fig. 1 Even function v and odd functionw of the PT-symmetric
potential, with a, b isosurface plots and c, d distributions in the
x–y plane, at z = 120, t = 1. The remaining parameters are
β0 = 0.2,W0 = 0.1, V1 = 2, ω = 0.15, and s0 = 0.4
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Fig. 2 Isosurface plots and intensity distributions of LBs in the
x–y plane, for DDM, at different propagation distances: a, d
z = 10, b, e z = 100, and c, f z = 160. The potential used is
depicted in Fig. 1

Fig. 3 a–c Real part, the imaginary part, and the phase of the
field distribution of LBs in the x–y plane, with m = 1. d–f
Intensity, halfwidth, and the chirp ofLBs, for twodifferent values
of m. Other parameters are as in Fig. 2

Fig. 4 a, c Even function v and b, d odd function w of the PT-
symmetric potential in the PMM at a, b z = 120, t = 1 and c, d
t = 1. The setup and other parameters are the same as in Fig. 1

of the field distribution is positive, while the imagi-
nary part is negative and has a far lower magnitude
than the real part. In Fig. 3c, an abrupt phase change
is seen. The phase of the LB, as expressed in Eq. (11),

Fig. 5 Isosurface plots and the intensity distribution of LBs in
x–y plane for PMM at different program distances a, d z = 10,
b, e z = 100, and c, f z = 160. The PT-potential used is depicted
in Fig. 4

is a result of the superposition of the original form, the
abrupt phase change θ(z, r) + δz in solution (9b), and
the parabolic shape ϕ(z, r) in Eq. (5). Thus, the phase
shows an abrupt gradient change on the parabolic back-
ground, which can be clearly seen from the top of the
parabolic shape in Fig. 3c. In Fig. 3d–f, the intensity,
half width, and the chirp of the LB with differentm are
displayed. We see that the intensity of the LB increases
slightly until about z = 15 and afterward there is lit-
tle change. On the other hand, the width decreases at
first and then remains constant along the propagation
distance. From Fig. 3f, it is apparent that the chirp of
the LB displays an odd-symmetric property about the
origin and at ±0.75 achieves a maximum and a min-
imum value, respectively. Moreover, the larger the m,
the smaller the intensity. However, in the case of width,
the opposite holds.

Figure 4 exhibits a periodic structure of the com-
plex PT-potential along the propagation distance z in
PMM. Similar to Fig. 1, the even and odd properties of
v and w are displayed in Fig. 4a, c and b, d. Along the
propagation distance, the characteristics of the periodic
oscillation change as shown in Fig. 4c, d.

Figure 5 presents the isosurface plot and the intensity
distribution of LB in the x–y plane for PMM, at differ-
ent propagation distances. Similar to Fig. 2, a spherical
distribution is seen. It is shown that the LB exhibits a
periodic propagation along thedistance z. This property
can be verified from Fig. 6d. Figures 6a–c describe the
real part, the imaginary part, and the phase of the field
distribution of the LB in the x–y plane, with m = 1.
Similar to the previous case, one can see that the real
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Fig. 6 a–c Real and imaginary parts, and the phase of field
distributions of LBs in x–y plane, with m = 1. d–f Intensity,
half width, and the chirp of LBs with two different values of m.
The parameters are the same as in Fig. 2

Fig. 7 Numerical simulation of LBs for DDM (a, b) and PMM
(c, d) at different distances a, c z = 100, and b, d z = 160. A
5% white noise is added to the initial field. The parameters are
the same as in the analytical plots

part of the field distribution is even and that the imagi-
nary is close to being odd and is far less in magnitude
than the real part. In the same way, the abrupt phase
transition is shown in Fig. 6c. When the DD parameter
β(z) is a cosine function, the periodic structure of the
soliton intensity, width, and the chirp is clearly seen
along the propagation direction in Fig. 5d, e. Similarly
to Fig. 3, it can be seen that with an increase in m,
the width and the chirp increase, while the intensity
decreases.

Figure 7 shows the direct numerical integration of
Eq. (1) for DDM (Fig. 7a, b) and PMM (Fig. 7a, b) at
different propagation distances. We use a 3D split-step
FFT beam propagation technique and consider an ini-
tial field whose form is given by Eq. (11) at z = 0. It
is seen that the numerical calculations indicate no col-

lapse, and stable propagation over tens of diffraction
lengths is observed, except for some small oscillations.
Moreover, the LB is more stable in the PMM than in
the DDM. Thus, based on these results, there is strong
indication that the dispersion/diffraction management
of the type considered can prolong the life of LBs sig-
nificantly.

4 Conclusion

In summary, we discovered LBs supported by a parity-
time symmetric potential with a power-law nonlinear-
ity. We established ways in which intensity, width,
phase, and the chirp of these LBs can be modified
by the variation in the diffraction/dispersion and the
nonlinearity coefficients. Our results indicate that the
behavior of 3D LBs in PT-lattice is considerably differ-
ent from the behavior of the dissipative and the ground
state solitons in the 3D case.
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