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Abstract We investigate the generation of breathers,
solitons, and rogue waves of the quintic nonlinear
Schrödinger equation (QNLSE) on uniform and ellipti-
cal backgrounds. The QNLSE is the general nonlinear
Schrödinger equation that includes all terms up to the
fifth-order dispersion. We use Darboux transformation
to construct initial conditions for the dynamical gen-
eration of localized high-intensity optical waves. The
condition for the breather-to-soliton conversion is pro-
vided with the analysis of soliton intensity profiles. We
discover a new class of higher-order solutions in which
Jacobi elliptic functions are set as background seed
solutions of the QNLSE. We also introduce a method
for generating anewclass of roguewaves—theperiodic
rogue waves—based on the matching of the periodic-
ity of higher-order breathers with the periodicity of the
background dnoidal wave.
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1 Introduction

Current research on various nonlinear Schrödinger
equations (NLSEs) with different dispersion and non-
linearity terms is incredibly rich and very intense,
owing to their widespread use as mathematical models
for physical systems in diverse fields, such as plasmas,
Bose–Einstein condensates, nonlinear optics, and solid
state physics [1–6]. Solitons, the solutions of NLSEs
that keep their shapes during propagation and mutual
interactions, as a result of balance between disper-
sive and nonlinear terms, are of special interest [4,6–
10]. The properties revealed by the propagation and
interaction of solitons play a vital role in developing
many applications [11,12]. Therefore, it is important
to find new soliton solutions to different physical mod-
els based on NLSEs and to study their properties.

In this paper, we study breathers, solitons, and rogue
waves of the extended nonlinear Schrödinger equation,
called the quintic equation

iψx + S[ψ(x, t)] − iαH [ψ(x, t)]
+ γ P[ψ(x, t)] − iδQ[ψ(x, t)] = 0,

(1.1)

where S, H , P , and Q are the specific operators arising
in the systematic derivation of the infinite hierarchy
of nonlinear Schrödinger equations [9,10]. They act
on the optical slowly-varying wave envelope, denoted
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by ψ ≡ ψ(x, t), and systematically take into account
increasing orders of dispersion and nonlinearity. As it
is customary in the field of fiber optics, the transverse
(temporal) variable is denoted by t and the longitudinal
(spatial) variable by x .

The nonlinear Schrödinger operator S includes the
basic second-order dispersion and Kerr nonlinearity:

S[ψ(x, t)] = 1

2
ψt t + |ψ |2ψ. (1.2)

The NLSE with only these terms present is the funda-
mental equation of nonlinear optics [13], on which the
whole edifice of higher-order NLSEs and various phys-
ical models are built. The Hirota operator H encom-
passes the third-order dispersion and the corresponding
nonlinearity [14]:

H [ψ(x, t)] = ψt t t + 6|ψ |2ψt . (1.3)

It is of importance in the generation of supercontinuum
[8] and in pulse-deforming phenomena [15]. Operator
P is called the Lakshmanan–Porsezian–Daniel (LPD)
operator and it encloses the fourth-order dispersion and
nonlinearity:

P[ψ(x, t)] = ψt t t t + 8|ψ |2ψt t + 6|ψ |4ψ + 4|ψt |2ψ
+ 6ψt

2ψ∗ + 2ψ2ψ∗
t t .

(1.4)

It arises in the analysis of Heisenberg spin chains [16].
The quintic operator Q includes the fifth-order terms:

Q[ψ(x, t)] = ψt t t t t + 10|ψ |2ψt t t + 30|ψ |4ψt + 10ψψtψ
∗
t t

+ 10ψψ∗
t ψt t + 20ψ∗ψtψt t + 10ψ2

t ψ∗
t .

(1.5)

The fifth-order dispersion cannot be neglected in laser
experiments producing ultrashort pulses, where the
pulse duration reaches below 20 fs [17].

In Eq. (1.1), we follow the convention adopted in
[16], calling the equation quintic and assuming that all
three real parameters: α, γ and δ are in general nonzero
(this is a slight change in notation as compared to [16],
in which the term “quintic” is reserved for the case of
α = γ = 0 and δ �= 0). Also, this equation is slightly
different from Eq. (1) in [18] having the same name,
but including the |ψ |4ψ term with the second-order
dispersion, rather than the fourth.

By setting all three parameters α, γ , and δ in
Eq. (1.1) to zero, the QNLSE reduces to the basic
NLSE, on which there exists a wealth of results
[4,7,12,19–21]. By extending the NLSE to a more
complex equation with variable coefficients, several

novel optical solitary waves have been found [22].
Additional higher-order dispersion and nonlinearity
terms in the NLSE are required to describe the propa-
gation of ultrashort pulses through optical fibers [5,23–
28].

Different solutions of the QNLSE, such as breathers
[29,30], solitons [29,31], and rogue waves (RWs) [32],
have been found and discussed in the literature. While
higher-order dispersion terms are needed for a more
accurate description of various propagation waves, the
H , P , and Q operators (which contain more than
just dispersion terms) were introduced based on the
paramount concern of integrability. How best to choose
the values α, γ and δ for a better, yet integral, descrip-
tion of any physical system remains an on-going pro-
cess [9,16]. The aim of this work is to explore the
impact of these higher-order nonlinear operators on
breathers, solitons and rogue waves. The current work
is an initial mathematical investigation rather than a
final physicalmodeling.But, now that extensive numer-
ical computations of these higher-order terms are avail-
able, we are in position to help experimenters in deter-
mining the optimal values ofα, γ and δ for any physical
system of interest.

The primary contributions of this work can be sum-
marized as follows: (1) We presented the procedure for
dynamical generation of high-intensity breathers and
RWs on uniform background, based on the Darboux
transformation (DT)method applied toQNLSE. (2)We
provided conditions for the breather-to-soliton conver-
sion in QNLSE and examined the transverse intensity
profiles of such solitons when α, γ , and δ are nonzero.
(3) We obtained new solutions of the QNLSE, when
Jacobi elliptic functions (JEFs) are used as the seed
waves in the DT scheme. (4)We discovered a new class
of RWs, the periodic rogue waves. (5) We confirmed
that the peak-height formula, introduced in [33], gives
the correct peak value for all the higher-order solutions
of QNLSE.

Some comments on the prior work are in order. Pre-
viously, the QNLSE has been analyzed as a specific
member in the infinite NLSE hierarchy of equations
[9,10]. There, new families of exact solutions have been
presented that included the dnoidal/cnoidal JEFs (for an
elementary introduction to JEFs, see [34]). The conver-
sion of the breather to a solitonwas analyzed in [16], but
for the specific case of α = γ = 0 and δ > 0. Follow-
ing similar lines to our combined analytical-numerical
procedure for the Hirota and NLSE [35–37], here we
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were able to find new solutions of QNLSE, when the
dn JEF is taken as the seed wave function in the DT
scheme. The algorithm is essentially the same as the
one introduced in [33,35] for the Hirota equation, but
the complexity of QNLSE required a more extensive
and intricate numerical procedure to attain the stated
goals. To this end, we extracted initial wave functions
from the DT applied to the QNLSE and then propa-
gated these functions to obtain dynamical propagating
RW solutions at an arbitrary x .

In the end, we demonstrated amethod for generating
recurring high-intensity structures of the QNLSE on
an elliptical background, which we call, paradoxically,
the “periodic rogue waves”. This is clearly explained in
Sect. 5. Our work generalizes the procedure previously
applied to theNLSE, as described in details in [38]. The
new insight we bring to this work is the realization that
anybreather constructed on a periodic backgroundwill,
in general, no longer be periodic. This is because the
period of the breather will generally be incommensu-
ratewith the period of the background. For higher-order
breathers, withmore than two periods, the resulting dis-
order frommore than two-wavemixingwill destroy any
periodicity, and they will therefore appear as solitary
peaks on a noisy background—that is, as commonly
understood RWs. However, by painstakingly matching
the periods of the breathers to the background, one can
resurrect the hidden periodic peaks obliterated by the
background. Therefore, a new class of RWs will be
produced, the periodic rogue waves.

This paper is organized as follows. In Sect. 2, we
analyze the basic solutions of the QNLSE and show
how higher-order breathers can be obtained numeri-
cally from the initial DT wave function. In Sect. 3, we
provide the condition for the breather-to-soliton con-
version. In Sect. 4, we present the procedure for calcu-
lating breathers and RWs on an elliptical background.
In Sect. 5, we show how to build periodic RWs on
a dnoidal background. In Sect. 6, we summarize our
results. The general DT scheme forQNLSE is provided
in “Appendix”.

2 Breather solutions of the quintic equation on a
uniform background

In this work, we evolve QNLSE numerically with a
precisely determined initial wave function so that its
intrinsic modulation instability focuses the initial wave

function into breathers andRWsof different orders. The
goal is to demonstrate that by adjusting the parameters
of QNLSE to match realistic fiber propagation prop-
erties, the initial wave functions determined appropri-
ately might be utilized in real experiments to produce
higher-order RW structures physically. To this end,
carefully chosen initial waves ψ (x0, t) at a particular
value of the propagation variable x = x0 are required,
which can be derived by specific procedures coming
from the inverse scattering theory, such as theDT.Then,
the RWs are generated dynamically, by employing con-
venient numerical algorithms to evolve the wave func-
tion ψ over the entire (x, t) grid.

Exact first-order solutions of the infinite NLSE hier-
archy are calculated in [9,10]. Here, we are interested
in the more realistic case of QNLSE (1.1) and higher-
order solutions. Thus, all the coefficients in the infinite
hierarchy multiplying the sixth and higher-order dis-
persions will be set to zero, while the initial waves will
be carefully chosen, so as to generate solutions of dif-
ferent orders. The solution procedure is as follows.

According to the inverse scattering theory of NLSE,
the first-order breather solutionψ1(x, t), characterized
by the complex eigenvalue

λ = r + iν, (2.1)

is obtained from the DT scheme having the ψ0 =
ei(1+6γ )x plane-wave seed. It is of the form:

ψ1 (x, t) =
(
1 + 2ν

G1 + i H1

D1

)
ei(1+6γ )x . (2.2)

Here:

G1 = cos (κr t + dr x) cosh (2χi )

− cosh (κi t + di x) sin (2χr ) ,

H1 = sinh (κi t + di x) cos (2χr )

+ sin (κr t + dr x) sinh (2χi ) ,

D1 = cosh (κi t + di x) cosh (2χi )

− cos (κr t + dr x) sin (2χr ) ,

(2.3)

where the wavenumbers, frequencies and other param-
eters are:

κ = 2
√
1 + λ2 = κr + iκi

χ = 1

2
arccos

(κ

2

)
= χr + iχi

d̄ = 2(α + 3δ) + (1 + 4γ )λ − 4(α + 2δ)λ2

− 8γ λ3 + 16δλ4
(
d̄ = d̄r + i d̄i

)
d = κ d̄ = dr + idi .

(2.4)
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Fig. 1 First-order breather intensity distribution in the (x, t)
plane for different values of parameters α, γ and δ. The eigen-
value is λ ≈ 0.97i . In each row, one parameter is varied
and the other two are set to zero. Top row: γ = 0, δ = 0,
α = −0.10, − 0.05, 0, + 0.05, + 0.10, from left to right. Mid-

dle row: α = 0, δ = 0, γ = −0.10, − 0.05, 0, + 0.05, + 0.10,
from left to right. Bottom row: α = 0, γ = 0, δ = −0.10, −
0.05, 0, + 0.05, + 0.10, from left to right. In each panel, the
transverse axis (horizontal) spans from t = −6.3 to 6.3 and the
propagation axis (vertical) from x = −2.5 to 2.5

One can see that ψ1 is periodic in the transverse
direction (with the imaginary part of the eigenvalue 0 <

ν < 1), i.e., it represents a breather. The frequency ω

and the period L are solely determined by the imaginary
part of the eigenvalue:

ω = 2
√
1 − ν2, L = π√

1 − ν2
. (2.5)

In Fig. 1, we show the first-order breathers with
purely imaginary eigenvalues, to depict the influence
of the QNLSE parameters α, γ and δ on the intensity
distribution of ψ1 in the (x, t) plane. In the top row,
we varied parameter α from − 0.1 to + 0.1, keeping
γ = 0 and δ = 0. Analogously, in the middle (bottom)
row, we changed only γ (δ) value. One can see that the
larger absolute value of α introduces the bigger skew of
the breather, while the sign of α determines to which
side the breather is tilted. The parameter γ does not
introduce the skew, but extends (γ < 0) or compresses
(γ > 0) the breather along the evolution x-axis. As for
δ, it also skews the breather (but stronger than α) and
narrows its intensity profile. These observations also
hold for the breathers on nonuniform backgrounds and
for higher-order breathers (i.e., RWs) that will be cov-
ered in the next sections. These, as it will be seen, can

be calculated via a recursive DT scheme using the same
seed for a given set of eigenvalues.

In order to create the N th-order QNLSE breather
dynamically, we have to preserve the fundamental peri-
odicity of ψ1 and thus choose periodic boundary con-
ditions in numerics. The details of the procedure are
given in [33,35]. Now, there are N eigenvalues, and
we assume that initially each of these eigenvalues is
purely imaginary λ j = iν j . We choose the eigenvalues
such that the higher-order frequencies are equal to the
integer multiples of the first-order frequency:ω j = jω
(ν1 ≡ ν, ω1 ≡ ω). It follows:

λ j = iν j = i
√
j2ν2 − ( j2 − 1) for 2 ≤ j ≤ N .

(2.6)

The procedure is to take the initial ν, calculate other
eigenvalues using the last equation and apply the DT, to
calculate the appropriate initial wave condition across
the transverse t-axis. That wave is then evolved numer-
ically, starting from some value of x before the desired
peak of the rogue wave and ending well past the peak.
For numerical integration, we use a finite difference
method, to calculate the derivatives up to fifth-order
and the fourth-order explicit Runge–Kutta method for
the evolution of the wave function. Due to the com-
plexity and high nonlinearity of the quintic equation,
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Fig. 2 Dynamically generated higher-order breathers ofQNLSE
on a uniform background. Initial wave functions are extracted
from the DT solutions and then numerically evolved along coor-
dinate x . The values of ν1 are set at the beginning of the proce-

dure, while other imaginary parts are calculated using Eq. (2.6).
a The second-order breather: ν1 = √

0.95, α = 0.0625, γ =
0.053, δ = 0.043. b The fourth-order breather: ν1 = √

0.9384,
α = −0.1625, γ = 0.017, δ = 0.006

derivatives are calculated with O(h12) accuracy, where
h is the step size along the t-axis.

In Fig. 2, we demonstrate the second- and fourth-
order breathers obtained dynamically. In Fig. 2a, we
choose ν1 = √

0.95 for the first constituent breather
and calculate ν2 using Eq. (2.6). The parameters are:
α = 0.0625, γ = 0.053, and δ = 0.043. In Fig. 2b,
it is ν1 = √

0.9384, α = −0.1625, γ = 0.017,
and δ = 0.006. As explained before, the tilt and
the stretching of breathers are caused by the QNLSE
parameters. We also confirm that the peak intensities
(|ψ |2max = 22.453 in Fig. 2a and |ψ |2max = 39.029 in
Fig. 2b) are determined solely by the imaginary parts
of eigenvalues, independent of α, γ , δ, in agreement
with the peak-height formula derived in our previous
work [33,35]. In fact, the same conclusion holds for
the infinite hierarchy of NLSEs.

3 Breather-to-soliton conversion in the quintic
equation

Usually, solitons cannot be obtained from breathers.
However, in QNLSE, for the specific values of α, γ ,
and δ, the solitons can be directly obtained from the
breather solutions. The breather-to-soliton conversion
happens when the extrema of trigonometric and hyper-
bolic functions in Eq. (2.3) are located along the same
straight lines in the (x ,t) plane [16]. FromEq. (2.3), one
can write:
dr
κr

= di
κi

. (3.1)

From this equation and Eq. (2.4), it follows:

d̄i = 0. (3.2)

Assuming a general complex eigenvalueλ = r+iν, we
use Eqs. (2.3) and (3.2) to derive a relation between α,
γ , δ, and ν for which the breather-to-soliton conversion
emerges:

8r
(
8r2δ − 3rγ − α − 2δ

)

+ 8ν2(γ − 8rδ) + 4γ + 1 = 0. (3.3)

The soliton obtained in this manner is characterized by
oscillatory tails at both sides of the central maximum.
If we analyze the transverse soliton profile at x = 0, we
see fromEq. (2.3) that themodulus of thewave function
ψ is determined by the ratio of cos (κr t) to cosh (κi t).
It follows that the number of side fringes depends on
the quantity κr/κi . Similar “multi-peak” andW-shaped
solitons were reported for the LPD equation, that is,
Eq. (1.1) with α = δ = 0 [39,40].

In Fig. 3, we show two breather-to-soliton conver-
sions under the condition of Eq. (3.3). One chooses the
real and imaginary parts of eigenvalue λ and of the
two quintic parameters. The remaining parameter is
then computed by Eq. (3.3). The soliton in Fig. 3a is
formed for λ = 0.75 + 0.9i , α = 0.75, γ = −0.12,
δ = −0.13139. For the soliton in Fig. 3b, we have
λ = 0.057 + 0.85i , α = 1

12 , γ ≈ −0.08397, δ = 1
24 .

In the first case, one sees one fringe at both sides of
the soliton maximum, due to the low kr/ki ≈ 1.7
ratio. In the second case, several fringes are seen, since
κr/κi ≈ 6.

4 Solutions of the quintic equation on an elliptical
background

Rogue waves in nature never appear on a flat back-
ground. There is always a wavy background, on which
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Fig. 3 Conversion of the first-order breather of QNLSE to a soliton: a λ = 0.75 + 0.9i , α = 0.75, γ = −0.12, δ = −0.13139 and
κr/κi ≈ 1.7, b λ = 0.057 + 0.85i , α = 1

12 , γ ≈ −0.08397, δ = 1
24 and κr/κi ≈ 6

under certain circumstances suddenly giant waves
appear. Therefore, of particular interest are localized
solutions that growon nonuniformbackgrounds [35]. It
is shown in [37] that the general form of NLSE solution
on an elliptical background can include only two JEFs,
cn or dn. We generalize this finding to the QNLSE.

Exact solutions of the QNLSE that include JEFs are
presented in [9,10]:

ψdn(x, t) = ceiφxdn (ct + vx,m) , (4.1)

ψcn(x, t) = c√
2

√
s + 1eiφx

· cn
(√

sct + √
svx,m = 1

2
+ 1

2s

)
.

(4.2)

Here we produce analogous solutions dynamically.
With m = g2 we denote the elliptic modulus squared,
c is an arbitrary constant, while φ and v are quantities
determined by α, γ , δ, m, and c, as specified below.
We can use any of these functions as a seed in the DT
scheme to calculate the N th-order breathers on ellip-
tical backgrounds. The matrices U and V , necessary
for the DT scheme of the quintic NLSE, are given in
“Appendix”.

Note that all results obtained for the Hirota equation
and presented in [35], can be obtained by the method
of this section, when γ = δ = 0 is chosen. However,
here we aim at obtaining more general solutions of the
QNLSE.

4.1 Applying the DT scheme to ψ0 = ψdn

We now apply the DT procedure, as described in
“Appendix”. We first examine the case when the
seed function ψ0 is given by Eq. (4.1), with φ =
1
2 (2 − m)c2 + γ c4(6 − 6m + m2) and v = (2 − m)

αc3 + δc5(6 − 6m + m2) [10]. To solve a system of
four coupled linear differential equations for Lax pairs
rt , st , rx and sx (subscripts indicate partial derivatives),
we use the traveling wave variable u

u = ct + vx, (4.3)

and replace the t-derivatives with the u-derivatives.
Having in mind the form of equations, we try the solu-
tions of the form:

r(x, u) = g(x, u)e−iφx/2, s(x, u) = h(x, u)e+iφx/2.

(4.4)

We skip the derivation details, which can be found in
[35]. First, one finds the u-derivatives of g and h:

gu = i
λ

c
g + i · dn(u)h, (4.5)

hu = i · dn(u)g − i
λ

c
h. (4.6)

Next, one provides the constants A and B for the quintic
case (cf. “Appendix”):

A =
(
4λ2 − mc2

)(
1

4
− αλ

)

+ (γ − 2δλ)

[
4λ2

(
c2 − 2λ2

)
− 1

2
mc4 (2 − m)

]
,

(4.7)

B = cλ
[
(1 − 4αλ) + 2 (γ − 2δλ)

[
(2 − m)c2 − 4λ2

]]
. (4.8)

The solution for the Lax pair generating functions, with
the eigenvalues λ j and x-shifts x0 j (1 ≤ j ≤ N ) is:

r1 j (x, u = 0) = 2ie−iφ
(
x−x0 j

)
/2

· sin[+χ j + κ jλ j (x − x0 j ) − π/4],
(4.9)

s1 j (x, u = 0) = 2e+iφ
(
x−x0 j

)
/2

· cos[−χ j + κ jλ j (x − x0 j ) − π/4],
(4.10)

where:

κ j =
√
A2
j + B2

j

λ j
, (4.11)
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Fig. 4 First-order breathers on the dn background. The parameters are: c = 1, λ = 0.75i , α = 0.13, γ = 0.1, δ = −0.07: a m = 0.752

and b m = 0.52. As m decreases, the breather appears more periodic

χ j = 1

2
arccos

κ jλ j

B j
. (4.12)

Constants A and B (and thus κ and χ ) are labeled with
the j index and are calculated for each λ ≡ λ j .

Now, we need to calculate r1, j and s1, j for any u.
The evolution equations are given by expressions (4.5)
and (4.6). We can solve them numerically, using the
fourth-order Runge–Kutta method. We write u = ct +
v(x − x0) = 0 and get t = − v

c (x − x0). Starting from
this value of t and bynumerically evolving du = cdt (at
a given x in the grid), one can calculate r1, j (x, u) and
s1, j (x, u). Next,we shift these values to the entire (x, t)
plane, to get r(x, t) and s(x, t). Finally, one employs
Eqs. (A 1) and (A 2) to calculate the N th-order solution
ψN (x, t).

In Fig. 4, we show the first-order breather (λ =
0.75i) on an oscillatory dn background, for different
values of m. The parameters are: c = 1, α = 0.13,
γ = 0.1, and δ = −0.07. For (a) m = 0.752 and for
(b) m = 0.52. Whereas breathers on a constant back-
ground are strictly periodic, except at λ = i , when one
obtains the Peregrine soliton, the peaks here are ape-
riodic. This is easily understandable because we now
have two periods, that of the breather, and that of the
background. When the two periods are incommensu-
rate, no overall periodicity is possible. We thus see the
quasi-periodic oscillation of the peaks with increasing
value of m. The spacing between the peaks can also
be understood as the beat phenomenon associated with
having two periods. As shown, there are only 7 peaks
for m = 0.752 but 11 for m = 0.52. In the limit of
m → 0, one recovers the constant background case.
For this case of first-order breathers, having two peri-
ods only changes periodicity to quasi-periodicity. As
wewill see in Sect. 5, for higher-order breathers involv-
ing more than two periods, the changes will be more
dramatic.

4.2 Applying the DT scheme to ψ0 = ψcn

The seed function ψ0 is now given by Eq. (4.2), where
φ = 1

2c
2 + 1

2γ c
4(3− s2) and v = αc3 + 1

2δc
5(3− s2).

We again consider the traveling wave variable u and
continue working in the xu-grid:

u = √
s (ct + vx) . (4.13)

Following the procedure from the previous subsection,
we get for the values of A and B:

A =
[
λ2 − c2

4 (2m − 1)

]

· [1 − 4αλ + 2(γ − 2δλ)(c2 − 4λ2)], (4.14)

B = cλ

√
m

2m − 1
[1 − 4αλ

+ 2(γ − 2δλ)(c2 − 4λ2)]. (4.15)

The Lax pair generating functions r1 j (x, u = 0) and
s1 j (x, u = 0), as well as κ j and χ j , all have the
same general form as for the dn seedings—Eqs. (4.9) to
(4.12). However, κ j and χ j differ in the two cases, due
to different A and B for the dn/cn seeds, and therefore
r , s and the final solution ψN (x, t) will differ too.

5 Periodic rogue waves

In this section, we show that the appearance of RW
solutions in theQNLSE is determinedby the interaction
of the periods of a higher-order breather with that of the
dn background.

In Fig. 5a, we show a second-order breather gener-
ated with ν1 = 0.92, ν2 = 0.81, and quintic param-
eters c = 1, m = 0.1049, α = 0.05, γ = −0.003
and δ = 0.5. Similar to the first-order breather case
of Fig. 4, the peaks are not periodic. For the second
and higher-order breathers, the mixing of three or more
modes generally leads to chaos, and the periodicity
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Fig. 5 Second-order breather on a dn background. Parameters:
c = 1, m = 0.1049, α = 0.05, γ = −0.003, δ = 0.5. a
Unmatched case, when only the central RW peak is generated:
ν1 = 0.92, ν2 = 0.81, q = 3.17. b Periodic rogue wave. Con-
stituent breathers arematchedmutually and to the dn background

wave: ν1 = 0.94, ν2 = 0.8345, q = 4. Insets in both fig-
ures show the 2D-intensity distributions, depicting high-intensity
peaks imposed on the elliptic background. Note the appearance
of the slanted secondary RW peaks in (a), suggesting the possi-
bility of building a Talbot carpet out of RWs

is destroyed. Therefore, one sees in Fig. 5a, only a
solitary peak on a noisy background. Thus, higher-
order breathers on a periodic background are generally
rogue waves. On a periodic background, there is there-
fore a radical distinction between first-order breathers
and all higher-order breathers.

What happens now if one insists that the higher-
order breather’s periodmatches that of the background?

The period of the dnoidal part of the DT seed func-
tion [Eq. (4.1) with c = 1] is given by:

Tdn = 2K (m) = 2
∫ π/2

0

dθ√
1 − m sin2 θ

, (5.1)

where K (m) is the complete elliptic integral of the first
kind. On the other hand, from the exact solution of the
Lax pair along the u = 0 line (Sect. 4), one can write
the characteristic breather period as:

TB = π

κr
. (5.2)

Here κ = κ(α, γ, δ, ν,m) = κr + iκi is given by
Eq. (4.11). In order for the breather’s period to be com-
mensurate with that of the dn function, onemust match
π

κr
= 2qK (m) ⇒ κr = π

2qK (m)
, (5.3)

for some positive integer q. This matching requires two
steps. (1) After some values of α, γ , δ and ν1 are cho-
sen, one writes the general expression for κ1 and the
breather period TB1 using Eqs. (4.7), (4.8), (4.11) and
(5.2). Then, one numerically solves Eq. (5.3) to find
m for given ν and q (note that this procedure can be
inverted, i.e. one can calculate ν1 for the given m). (2)

One matches the periods of all constituent breathers by
numerically solving the set of N − 1 equations:

TB j = TB1/j, where j = 2, . . . , N . (5.4)

In thisway, one calculates ν2, . . . , νN . Having the com-
plete set of breather frequencies, the wave function
ψN (x, t) can be calculated using DT (see Sect. 4.1).

For the same set of quintic parameters as used in
Fig. 5a, we now take ν1 = 0.94, giving q = 4, mean-
ing that the period of the first constituent breather is
four times larger than the period of the dn seed func-
tion (4.1). Next, we determine ν2 of the second con-
stituent breather from TB2 = TB1/2 to be ν2 = 0.8345.
Now both breather’s periods are commensurate to the
background and to each other. The resulting second-
order breather is shown Fig. 5b. One now sees a peri-
odic series of peaks of nearly equal height as that of
Fig. 5a. Clearly, if Fig. 5a is a rogue wave, then Fig. 5b
is a periodic rogue wave.

We repeat the procedure for a third-order breather,
keeping the same values of c, m, α, γ , δ and ν1 as in
the previous figure. The results are depicted in Fig. 6.
Again, if we just take ν2 = 0.81 and ν3 = 0.61, with
periods unmatched to the background, one obtains a
RW shown in Fig. 6a. However, if one takes ν2 =
0.8345 and ν3 = 0.625, matching the background
period, then one obtains the periodic RW of Fig. 6b.
Note that the peaks are lying along a skewed line in the
(x, t) plane, not along the t-axis.

If one changes the elliptic modulus squared m suffi-
ciently, while keeping the breather’s eigenvalues intact,
the RW periodicities would also be disturbed (not
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Fig. 6 Third-order breather on a dn background. Parameters:
c = 1, m = 0.1049, α = 0.05, γ = −0.003, δ = 0.5. a An
unmatched case when only the central RW peak is generated:
ν1 = 0.92, ν2 = 0.81, ν3 = 0.61, q = 3.17. b Periodic RW.

The constituent breathers are matched mutually and to the dn
background wave: ν1 = 0.94, ν2 = 0.8345, ν3 = 0.625, q = 4.
Insets in both figures show the 2D-intensity distributions, depict-
ing high-intensity peaks imposed on the elliptical background

shown). We stress the fact that the third-order peri-
odic RWs are harder to obtain and are more vulnerable
to the mismatch of the frequencies, when compared
to the second-order breathers. Also, the possibility of
building Talbot carpets with the third-order periodic
RWs appears more remote. Namely, the modulation
instability of the third-order solutions is greater and
the probability of three different modes constructively
interfering in the (x, t) plane is significantly lower.

We also confirm the validity of the peak-height for-
mula for the dn background (Figs. 4, 5, 6), since it
exactly reproduces the maximum intensity of the cen-
tral peak at (0, 0) (not shown). This further points to
the universal validity of the peak-height formula for all
members of the infinite hierarchy of NLSEs.

6 Conclusion

In this paper, we have presented a procedure for the
dynamical generation of breathers and RWs of the
QNLSE on uniform and elliptical backgrounds. We
have derived the condition for the breather-to-soliton
conversion of QNLSE for nonzero α, γ , and δ param-
eters, and provided an analysis of intensity profiles of
a converted soliton.

We have obtained various intense solitary or peri-
odic peaks for the highly nonlinear and computation-
ally demanding QNLSE. In many aspects, our proce-
dure can be termed as an exact procedure for obtaining
numericalRWsof theQNLSE. In thisway, one can con-
struct and analyze unstable higher-order solutions due
to the modulation instability. They could be of impor-

tance for the production of exotic solutions in physical
systems modeled by the QNLSE.

But most importantly, we have pointed out a rad-
ical distinction between the first-order breathers and
all higher-order breathers on a periodic background.
The first-order breathers can at most be quasi-periodic,
whereas all higher-order breathers are generally RWs.
By matching the period of the breather to that of the
background, which requires exceedingly fine tuning,
one can generate a new and even more rare kind of
RWs, which, paradoxically, are periodic.
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Appendix A: The general Darboux transformation
scheme

The quintic solution of order N is a nonlinear superpo-
sition of N independent simple solutions, where each
is determined by the complex eigenvalue λ j (1 ≤ j ≤
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N ). The corresponding wave function is:

ψn = ψn−1 + 2
(
λ∗
n − λn

)
sn,1r∗

n,1∣∣rn,1
∣∣2 + ∣∣sn,1

∣∣2 . (A 1)

The Lax pair functions rn,1 and sn,1 are given by recur-
sive relations involving rn,p(x, t) and sn,p(x, t):

rn,p = [(
λ∗
n−1 − λn−1

)
s∗
n−1,1rn−1,1sn−1,p+1

+ (
λp+n−1 − λn−1

) ∣∣rn−1,1
∣∣2rn−1,p+1

+ (
λp+n−1 − λ∗

n−1

) ∣∣sn−1,1
∣∣2rn−1,p+1

]
/ (∣∣rn−1,1

∣∣2 + ∣∣sn−1,1
∣∣2) ,

sn,p = [(
λ∗
n−1 − λn−1

)
sn−1,1r

∗
n−1,1rn−1,p+1

+ (
λp+n−1 − λn−1

) ∣∣sn−1,1
∣∣2sn−1,p+1

+ (
λp+n−1 − λ∗

n−1

) ∣∣rn−1,1
∣∣2sn−1,p+1

]
/ (∣∣rn−1,1

∣∣2 + ∣∣sn−1,1
∣∣2) .

(A 2)

Thus, all pairs rn,p and sn,p can be determined start-
ing from r1, j and s1, j . The functions r1, j (x, t) and

s1, j (x, t), forming the Lax pair R =
(
r
s

)
≡

(
r1, j
s1, j

)
,

are determinedby the eigenvalueλ ≡ λ j and an embed-
ded arbitrary center of the solution (x0 j , t0 j ). The Lax
pair satisfies a system of linear differential equations:

∂R

∂t
= U · R,

∂R

∂x
= V · R. (A 3)

For the quintic NLSE, matricesU and V are defined as
(ψ ≡ ψ0) [31]:

U = i

[
λ ψ(x, t)∗
ψ(x, t) − λ

]
,

V =
5∑

k=0

λk · i
[
Ak B∗

k
Bk − Ak

]
. (A 4)

The coefficients Ak and Bk are given by:

A0 = −1

2
|ψ |2 − 3γ |ψ |4 − iα

(
ψ∗
t ψ − ψtψ

∗)

−γ
(
ψ∗
t tψ − |ψt |2 + ψt tψ

∗)

−iδ
(
ψ∗
t t tψ − ψ∗

t tψt + ψt tψ
∗
t − ψt t tψ

∗)
−6iδ

(
ψ∗
t ψ − ψtψ

∗) |ψ |2,
B0 = 2α|ψ |2ψ + 6δ|ψ |4ψ + i

1

2
ψt + 6iγ |ψ |2ψt

+αψt t + 2δψ∗
t tψ

2 + 4δ|ψt |2ψ + 6δ(ψt )
2ψ∗

+8δψt t |ψ |2 + iγψt t t + δψt t t t ,

A1 = 2α|ψ |2 + 6δ|ψ |4 − 2iγ
(
ψ∗
t ψ − ψtψ

∗)
+2δ

(
ψ∗
t tψ − |ψt |2 + ψt tψ

∗) , (A 5)

B1 = ψ + 4γ |ψ |2ψ − 2iαψt − 12iδ|ψ |2ψt

+ 2γψt t − 2iδψt t t ,

A2 = 1 + 4γ |ψ |2 + 4iδ
(
ψ∗
t ψ − ψtψ

∗) ,

B2 = −4αψ − 8δ|ψ |2ψ − 4iγψt − 4δψt t ,

A3 = −4α − 8δ|ψ |2,
B3 = −8γψ + 8iδψt ,

A4 = −8γ,

B4 = 16δψ,

A5 = 16δ,

B5 = 0. (A 6)

The solutions of Lax pair equations are further pursued
in the text.
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