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Abstract This paper obtains soliton solutions to opti-
cal couplers by two methods. These are sine—cosine
function method and Bernoulli’s equation approach.
There are four laws that are touched upon in this paper.
These are Kerr law, power law, parabolic law and dual-
power law. The first integration scheme is applicable
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to Kerr and power laws only where bright soliton solu-
tions are retrievable. The second tool is applicable to
parabolic and dual-power laws only that leads to dark
and singular solitons for these two nonlinear media.

Keywords Solitons - Integrability - Couplers
1 Introduction

Theory of solitons in optical fibers is a very rich area of
research in the field of nonlinear dynamics, in particular
nonlinear optics [1-50]. There are several papers that
describe the dynamics in optical fibers using a plethora
of integration schemes. It is about time to change gears
for the time being. This paper focuses on soliton solu-
tions in nonlinear directional optical couplers. Three
types of couplers will be the focus in this paper. They
are twin-core couplers, coupling with nearest neighbors
and coupling with all neighbors. Each type is studied
with four nonlinear forms. These are Kerr law, power
law, parabolic law and dual-power law.

This paper considers the governing nonlinear
Schrodinger’s equation with spatiotemporal dispersion
(STD) in addition to the usual group velocity disper-
sion (GVD). STD makes the model well posed as
pointed out during 2012 [17]. Therefore, it is imper-
ative to study NLSE in couplers as well as in fibers
with STD term included. It must be noted that optical
couplers have been studied earlier by ansatz scheme
and other methods [1,6-9,43]. There are a couple of
different integration schemes that will be exploited, in
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this paper, to retrieve soliton solutions for these kind of
couplers. There are several constraint conditions that
will be listed for these soliton solutions to exist. It will
be clearly noticeable that Kerr and power laws retrieve
bright soliton solutions only, while parabolic and dual-
power laws give dark and singular soliton solutions.
Such are the limitations of the schemes adopted in this

paper.

2 Integration algorithms: an overview

There are two integration algorithms that will be imple-
mented in this paper. These are sine—cosine function
method and Bernoulli’s equation method. The first inte-
gration scheme is applicable to Kerr and power laws
of nonlinearity for all three kinds of couplers, while
the second integration scheme is applicable to par-
abolic and dual-power laws of nonlinearity. After a
brief overview of these schemes, we will dive into the
extraction of soliton solutions for all kinds of couplers
from the next section.

2.1 Sine—cosine function method

A partial differential equation (PDE)

P(uvulau)hux)huxtsulf"°'):0’ (1)

can be converted to an ordinary differential equation
(ODE)

oWw.u\Uu", ..)=0, 2)

upon using a traveling wave variable u(x,7) =
U(z), z = x — vt. If possible, integrate Eq. (2) term
by term one or more times. This will reduce the order
of Eq. (2). For simplicity, the integration constants can
be set to zero. The solutions of the reduced ODE can
be expressed in the form

v

U(z) = rcosP (uz), |z < —, 3)
2p
or in the form
. B T
U(z) = Asin”(uz), |z| < P “4)

where A, w, and B are parameters that will be deter-
mined, i and v are the wave number and the wave
speed respectively. These assumptions give
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(Un)// _ —nz,u2,32)»" cos™? (uz)

+ A" B(np — 1) cos™ 2 (uz), (5)
and
(U”)” = —n?u2 BN sin™ (uz)

+ a2 BmB — 1) sin? 2 (uz). (6)

Using (3)—(6) in the reduced ODE gives a trigonometric
equation in cosX(z) or sin® (z) terms. The parameters
are then determined by first balancing the exponents of
each pair of cosines or sines to determine K. We next
collect all coefficients of the same power in cosX (z)
or sinX (z), where these coefficients have to vanish.
This gives a system of algebraic equations among the
unknowns S, A, v and u that will be determined. The
solutions proposed in (3) and (4) follow immediately.

2.2 Bernoulli’s equation method

Let us present the algorithm of Bernoulli’s equation
approach for finding exact solutions of nonlinear PDEs.
We consider the nonlinear PDE in the following form:

Pl (u»”taux’uxx’“-):()- (7)

Using traveling wave u(x,t) = U(z), z = x — vt
carries Eq. (7) into the following ordinary differential
equation (ODE):

P, U, U, U;, U, ...)=0. ®)

The Bernoulli’s equation approach utilizes the follow-
ing steps:

Step-1 We look for exact solution of Eq. (8) in the
form

N

U=> 4G ©)
=0

where A;(I = 0,1, ..., N) are constants to be deter-

mined later, such that Ay # 0, while G(z) has the
form

G(z) = g [1 + tanh (% (z+ Zo))] (10)

a solution to the Bernoulli’s equation

G'(z) = 8G(z) — G*(2) (11)
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where § is an arbitrary constant.

Step-2 We determine the positive integer N in Eq.
(9) by considering the homogeneous balance between
the highest order derivatives and the nonlinear terms in
Eq. (8).

Step-3 We substitute Eq. (9) into Eq. (8) and cal-

culate all the necessary derivatives U, U, ... of the
unknown function U (z) as follows:
N
U= > Al -GG (12)
=1
N

Ue = > A {(1 +DG* = 821 + DG +187} &,
=1
(13)

and so on. Substituting Egs. (9), (12) and (13) into Eq.
(8), we obtain the polynomial

E>[G(z)] = 0. (14)

Step-4 Collecting all the terms of the same powers of
the function G(z) in the polynomial (14) and equating
them to zero, we obtain a system of algebraic equa-
tions which can be solved by computer programs such
as Maple and Mathematica to get the unknown para-
meters A, § and v. Consequently, we obtain the exact
solutions of Eq. (7).

3 Twin-core couplers

The governing equation for twin-core couplers is given
by [6-9,43]

g+ @gu +bigu +a F (1) g =k, (9)

ir +arrex + bore 4+ F (|r|2) r=kyq. (16)

Equations (15) and (16) represent the coupled NLSE,
with GVD and STD, that governs soliton propagation
through twin-core optical fibers, typically for non-Kerr
law media. The first term, for both equations, represents
the evolution term. The coefficients of GVD are a;,
while the coefficients of STD are b; for! = 1, 2. Then,
c; represents the coefficients of nonlinearity where the
functional F' gives the type of nonlinearity that will be
studied. Here, F (|q|2) q : C — C. Considering the
complex plane C as a two-dimensional linear space R>,
the function F (|q|2) q is k times continuously differ-
entiable, so that

F (|q|2)q € G ck ((—n,n) X (—m,m); Rz).

m,n=1

A7)

On the right-hand sides of (15) and (16), constant k1, k2
represent the coupling coefficients. In order to study
integrability of these equations by sine—cosine function
method and Bernoulli’s equation approach, the follow-
ing solution structure is selected.

q(x, 1) = Pi(x, e/, (18)
r(x, 1) = Py(x, 1)e' 9™ (19)
where Pj(x,t) (I = 1,2) represents the amplitude

component of the soliton solution, while the phase com-
ponent ¢ (x, t) is defined as

¢(x,t) = —kx+owt+06. (20)

Here, « is the frequency of the solitons while @ rep-
resents the wave number and 6 is the phase constant.
Substituting (18) and (19) into (15) and (16) and then
decomposing into real and imaginary parts gives

P 3*P

2
alw +blm + P (bla)/c —w — aiK )

+c¢ F(PHP — ki P; =0, (21)
and
P P
(1 —bjk)— + (bjw —2a;6) — =0, (22)
ot ax

respectively. Here, [ = 1,2 and [ = 3 — [. Under the
traveling wave transformation

Pi(x,t)=U;(t), Py(x,t)=Uy(t), T = B(x —vt)

(23)
we have
d?U
(a; — blv)Bz—zl + U (bza)/c —w— a1K2)
dr
+¢ F(UHU; — kU; = 0, 24)
and
du,
(—v(l —b;K)-}-bla)—ZalK}Bd—l —0. (25)
T
Now, from Eq. (25), we get
bijw — 2a;x 26)
V= —
1 — bk

Now, equating the two values of the soliton speed
leads to
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ar = a 27
and
by = bs. (28)

The speed of the soliton therefore reduces to

B bw — 2ak

= 29
v 1— bk (29)

The coupled NLSE for twin-core couplers given by (15)
and (16) modifies to
g +agues +bau + o F(la)a=kr,  (0)

iry +aryy +bry +cy F (|r|2) r = kogq. 31

where a; = a» = a and by = by = b. Consequently,
the Eq. (24) changes to

d?u,
(a — bv)Bzyzl + U (ba)ic —w— aKz)
+¢ FUHU; — kU = 0. (32)

3.1 Kerr law nonlinearity

For Kerr law nonlinearity, F (s) = s. The model equa-
tions (30) and (31), for twin-core couplers with Kerr
law nonlinearity, reduce to [6-9,43]

iqi + aqxx +bqu + c1la’q = kir, (33)
iry +aryy + bry + cz|r|2r = kaq. (34)
Therefore, real part equation (32) is
d’v,
(a — bv)Bz—l + U; (ba)/c —w— alcz)
dr?

+aU} — kUs = 0. (35)

Using the assumption
Ui(v) = i cos’ (u), (36)

in Eq. (35), we obtain
(UD)er = =B 1y cos (ur)

+ BB — 1) cos” 2 (u). (37)
Substituting Egs. (36) and (37) into Eq. (35), we have

vy {—(a - bv)Bz,uz/B2 + bwk — w — alcz} cosﬁ(/u)

+ M@ — bv) B B(B — 1) cosP 2 (ur)
+Cl}‘l3 cos3ﬂ(/u) — klkicosﬂ(ut) =0. (38)
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Using the balance method, by equating the exponents
and the coefficients of cosX (), we get

BB —1) #0, (39)
3=p-2, (40)
M@ —bo)B* BB — 1) +chi =0, (41)
vy {—(a - bv)Bz,uz;‘}2 + bwk —w — alcz}

—kia; = 0. (42)

Solving the system (Eqs (39)—(42)) simultaneously, we
get the solution set

B=-1, 43)
)\.2_’_2 BZ 2
p= L TAAT (44)
2bB2 12
2ak?r; — )3 + 2kih;
i R B il (45)
200k — 1)

Next, equating the two expressions for the soliton wave
number from (45) for/ = 1, 2 gives

AMAo (Cz)\% — C])»%) =2 (kz)»% — kl}\.%) . (46)

Equating the two expressions for the soliton speed v
from (44) implies

A

L 47)
A2 1

which immediately prompts the constraint

cicr > 0. (48)

The amplitudes of the solitons are given by the non-
linear coupled system (46) and (47). This shows that
nonlinear terms from two components of NLSE must
bear the same sign for bright solitons to exist.

Finally, equating the two expressions for the soliton
speed v from (29) and (44) implies

1 —
PR Sl L — (49)
2u? (bza) —akb — a)

which introduces the constraint

(1 — br)cy (bza) —axkb — a) > 0. 50)
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Consequently, we obtain singular periodic solutions
with periodic blow-ups:

1) = A (1 — br)cy N
X,1) = A sec
1 ! 2 (bza) —axb —a) !

< dx— bw — 2ak | i (rxtor+6)
1 — bk ’

(51)
_ (1 —br)cp
r(x,t) = Ao sec |:\/2 (b2w " eh a) A

1y — bo —2ax (V| i (rxtort6)
1 — bk

(52)

where o is given by Eq. (45). These periodic solutions
will exist provided the constraint condition given by
(48). Additional constraints that must also remain valid
are

bw # 1, (53)
bk # 1, (54)
bw # 0, (55)

which follows from (26), (44) and (45).
It is easy to see that solutions (51) and (52) can
reduce to bright soliton solutions given by

bk — 1
Cl(x,t)z)qsech[\/z((x e A

b’w — akb — a)
1y — bo — 2ax (V| i (e tort6)
1 — bk ’

(56)
r(x,t) = Apsech [\/2( (bk — 1)z "

b2w — akb — a)
1y bw —2ak ¢ ei(flcx+wt+9)
1 — bk
(57)

where w is given by Eq. (45). The bright solitons will
exist provided (48) and (53)—(55) hold.

3.2 Power law nonlinearity

For power law nonlinear media, F(s) = s" where
n represents power law nonlinearity factor. Thus, for
twin-core couplers, the NLSE [6-9,43]

iq + aqex + bqx + c1lq*"q = kur, (58)
iry 4+ arey + breg + e |r|?'r = kog. (59)

It must be noted that 0 < n < 2 for stability of solitons.
Additionally, n # 2 to avoid self-focusing singularity.
Therefore, real part equation (32) is
2
(a — bv)B2w + U (b(,()K —w— aKz)
dr?
+a UP — U = 0. (60)

Using the assumption
Ui(x) = cos” (uv), 1)

in Eq. (60), we obtain
UD)rr = —1* B cos” ()
+u’hB(B — 1) cos’ 2 (ur). (62)
Substituting Egs. (61) and (62) into Eq. (60), we have
M {—(a — bU)BZM2ﬂ2+wa—w — a1<2} cosﬂ(,ut)

+ i@ — bv) B2 B(B — 1) cosP 2 (ur)
+ e eos® VB (T — ki cosP (ut) = 0.
(63)

Using the balance method, by equating the exponents
and the coefficients of cosX (), we get

BB —1)#0, (64)
@Cn+1)B=p-2, (65)
Ma —bv)BH BB — 1) +cad" T =0, (66)

Al {—(a — bv)Bzu2ﬂ2+wa—a)—alc2} —kiay = 0.
(67)

Solving the system (Eqs. (64)—(67)) simultaneously,
we get the solution set

B= —l, (68)
n
nzclklz” + (1 4+ n)aB*u?
B (1 + n)bB2 2
. (1 + myak?n — cn T 4+ (1 + n)kiag 0)
(1 + n)a (b — 1)

Equating the speed of the solitons from the two com-
ponents implies

1
A o\ 20
— == , 71
%) (Cl) b

@ Springer
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which poses the constraint (48). Next, after equating
the two expressions for the soliton wave number the
relation

Mo (czxgn — qx%") = (1+n) (kzx% - kM%) .72

Finally, equating the two expressions for the soliton
speed v from (29) and (69) implies

Bt (1 — bk)cy
B (14 n)u? (b*w — axb — a)

which implies

A, (73)

(1 = by (bzw — axh — a) - 0. (74)

Consequently, we obtain the following singular peri-
odic solutions:

ety = i 1 (1 = br)cy o
x,1) = Apsecr n
q ! (14 n) (b*w — akb — a) !

w1y = bw — 2ax t ei(—l(x+wt+0)
1 — bk ’

(75)

1—-b
F(x, 1) = Ajsech (1 — b))z i
(1+n) (b’w — akb — a)

1y — bo —2ax (V| i (rxtort6)
1 — bk

(76)

where o is given by Eq. (70). This periodic solution
will exist provided the relations for (48) and (53)—(55).

It is easy to see that solutions (75) and (76) can
reduce to bright 1-soliton solutions

bk — 1
q(x, 1) =\ sech# (b« e nY
(1+n) (b’w — akb — a)

1y bw —2ak f ei(flcx+wt+0)
1 — bk '

(77)

1 (bx — 1)cp n
r(x,t) = Ao sechn nis
(1+n) (b’w — akb — a)

1y — bw — 2ak 11| ei(—rxtwr+6)
1— bk

(78)

where w is given by Eq. (70). The bright solitons will
exist provided (48) and (53)—(55) hold.
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3.3 Parabolic law nonlinearity

For parabolic law nonlinear media, the governing
NLSE is given by [6-9,43]

igs + aque + baw + (811a17 + milal*) ¢ =k,

9
it + arce +bro + (8202 + n2lrl*) r = kag.

(80)

The parameters & and n; for [ = 1,2 represent the
coefficients of cubic and quintic nonlinear terms for the
two components. In this case, real part equation (32)
reduces to

d’U
(a — bv)Bz—l + U (ba)fc —w— afcz)
dr2
+&U} + U — kU = 0. @1
Balancing U, with Ul5 in Eq. (81), we have
1
N+2=5N©2=4N©N=§.

We then assume that Eq. (81) has the following formal
solution:

Ui(t) = Al (G (), Al #0 (82)

where A; are constants to be determined later and G
satisfies

G'(7) = 8G(1) — G*(7). (83)
Thus, we obtain
2 3 3 1 (32
(a —bv)B ZA;GZ — A8G? + ZA;
A (wa —w— a/cz) +E5AIG?

+mAGE — Ky A; = 0. (84)

Then, equating the coefficient of each power of G to
zero, we obtain a system of nonlinear algebraic equa-
tions and by solving it, we get

_ 4mAl +3B%a

, 85
3B2b (85)
3
P (86)
4Al 0
3E2A; + 16Aaxk? 16k;n; A7
w §f Al + 16Aaxc " + 16k A; 87)

16A;n; (bx — 1)

where B, k, A;, k; are arbitrary constants.
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Next, equating the two expressions for the soliton
wave number from (87) for [ = 1, 2 gives

3A14A; (512772 - 522771) =16 (sz% - klA%) nin2-
(83)

Equating the two expressions for the soliton speed v
from (85) implies

1
Ay (772)4
— == . (89)
A n
which leads to
nin2 > 0. (90)

The amplitudes of the solitons are given by the nonlin-
ear coupled system (88) and (89).
Finally, equating the two expressions for the soliton
speed v from (29) and (85) implies
B4 247/ (T = Dbk) oD
\/3 (b*w — abk — a)

that compels
m (1 = bi) (bzw — ab — a) - 0. (92)

Thus, we obtain the exact traveling wave solution of
Egs. (79) and (80) as
3(1 —bk)

_ ] 3% &1
qx.t) = { 81 [1 + tan h( \/m(bz T ——
1
y (x B (M) ,)) } } i (—kx+or+0)
1—bk ’

93)

3(1 — bk)

3
e = =321 a2
8 4 nz(bz —abk — a)
X (bw 2a/c ) j” 1(7Kx+wt+(-?)

1—bk
94)

X

which are dark 1-soliton solutions and
3§ &1 3(1 = bx)
) =1—— coth
qlx.1) { n |: (4\/n1(b2w—abl<—a)
1
o (x — (P2 2ax, ’ o (—kx+wr+0)
1 — bk ’

95)

NS o[ 30-bo
re.n = { 81 |:1 te ( 4 \/nz(b2w —abk — a)

1
o (o — (Po=2ax, ’ ol (—kx+01+6)
1 — bk '

(96)

which are singular 1-soliton solutions, where w is given
by Eq. (87).

3.4 Dual-power law nonlinearity

For dual-power law nonlinearity, the governing coupled
NLSE is [6-9,43]

iqr +aqxx + bgxr + (El g + 1 Iq|4”) q = ki,
©7)

iri + arce + bro + (802" + mlr™) r = kag.
©98)

The special case, forn = 1, is parabolic law nonlinear-
ity, discussed in the previous subsection. In this case,
real part Eq. (32) reduces to

d’v,
(a — bv)B2d—l + U (ba)/c —w— aKz)

+gUt Ut — Uz = 0. (99)

Balancing U, with Ul4"+1 in Eq. (99), we have
1

N+2=@ln+1N & 2=4nN & N = —.

n

We then assume that Eq. (99) has the following formal

solution:

Ui(t) = AIGZ (1), Al #0 (100)

where A; are constants to be determined later and G
satisfies Eq. (83). Thus, we obtain

1+2n A8(1+n)
puyB? | g g2 A0
(@=bv) [4n2 ! 2n?

+ A (ba)/c —w— alc2) + EZAIZ”'HG

G+-—A
e

+mATIG? — K A;=0. (101)

@ Springer



1940

M. Mirzazadeh et al.

Then, equating the coefficient of each power of G to
zero, we obtain a system of nonlinear algebraic equa-
tions and by solving it, we get

4n’n AP + (1 +2n)B%a
b= (1 +2n) B2
(1+2n)%
201+ mAPy

(102)

(103)

(1 +2m)E2Ap + 401+ m)2 Aja®ng + 4(1 + n)>kymy A
w=—
41 +n)2 A (b — 1)

(104)

where B, k, Aj, k; are arbitrary constants. Next, equat-
ing the two expressions for the soliton wave number
from (104) for [ = 1, 2 gives

(1+2m A1 Az (8802 — €1

— 41 4 n)? (sz% —klAg) o (105)

Equating the two expressions for the soliton speed v
from (102) implies

1
A W
Al _ (E) , (106)
A n

which remains valid provided

nmmn2 > 0. (107)

The amplitudes of the solitons are given by the nonlin-
ear coupled system (105) and (106).

Finally, equating the two expressions for the soliton
speed v from (29) and (102) implies

2n AP/ (T = bk)

B=+ (108)
\/(1 +2n) (b2 — abk — a)

for

n (1 — bk) (bza) —abk — a) > 0. (109)

Thus, we obtain the exact traveling wave solution of
Egs. (97) and (98) as

which are dark 1-soliton solutions and

| asomg
qx, 1) = { T |:1:|:c0th

y néi (I +2n)(1 - bx)
21 +n)\ n1(b%w — abk — a)
1
» (x _ (bw - 2“") z))] } 2 el (—rx+or+0)
1 — bk

(112)
r(x, 1) ={ A+ 2m)5 |:l:|:c0th

4+,
(& (1 +2n)(1 — bk)
21 +n)\ no(b%w — abk — a)

1
w(x— bw —2ax : m ol (—kxFor+)
1— bk ’

(113)

which are singular 1-soliton solutions, where w is
given by Eq. (104).

4 Multiple-core couplers (coupling with nearest
neighbors)

The governing equation for twin- core couplers is given
by [6-9,43]

. (1 1 [
ia” +aqll + by + o F (Iq(”lz) q"
=k [q07D = 2¢® +¢0+D]. (114)

where 1 <[ < N.Equation (114) represents the general
model for optical couplers where coupling with nearest
neighbors is considered. Here, k; are, as before, the
coupling coefficients. In order to address this model for
the four forms of nonlinear media, the initial hypothesis
is taken to be

2(1 +n)

q(x,t):{ “sz”)fl[litanh( n&| \/(1+2n)(1—b;<)

R RES)

n1(b2w — abk — a)

r(x,t):{ “sz”)&[litanh( né \/(1+2n)(1—b;c)
m(b2w — abk — a)

DL 2(1 +n)

g x.1) = P(x, 1)e?D (115)
1
(e
1—bk ’
(110)
1
() e
1— bk ’
(111)
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where the amplitude component of soliton is P;(x, t)
while the amplitude component carries the same defin-
itionasin (18) or (19). After substituting this hypothesis
(115) into (114), the resulting expression is split into
real and imaginary components. The imaginary part
gives the speed of the soliton as

_ bjw —2ajx

— (116)

The speed of the soliton stays the same irrespective
of the type of nonlinearity and type of solitons that is
going to be addressed. Next, the real part implies
P 9P 2
li)xiz +b1m + P (bla)/c —w—ajk )
+ ¢ F(PIZ)PI —k; [Pl—l —2P + Pl+l] =0.

a

117)
Under the traveling wave transformation
Pi(x,t) =Uj(t), ©=B(x—vt) (118)
we have
(a — b,v)Bz% +u (bla)/( —w— alxz)
+a FUDU; = kg [Up—1 = 2U; + Uy = 0.
(119)

4.1 Kerr law nonlinearity

For Kerr law, the coupled NLSE modifies to [6-9,43]
i +agl) + biayy) +ci 1 2q®

=k [q(l—l) _ zq(l) + q(l-i-l)} . (120)
For hypothesis given by (115) and (118), Eq. (120)
reduces to

2

(a; — blv)Bz% + U (bla)/c —-—w— a1K2)

e U =k [Ui—1 —2U; + Upy4] = 0. (121)

Using the assumption
U(r) =N cos? (nt), (122)

in Eq. (121), we obtain
Uy = —p* B2y cos (u)
+ 12 B(B — 1) cos? 2 (ur). (123)

Substituting Eqs. (122) and (123) into Eq. (121), we
have

A {—(al—blv)Bzuzﬂz—l—bla)K—a) - a1K2] cos? (ut)
+hy(a; — bpv) B2 ? B(B — 1) cosP 2 ()
+c1)L13 cos# (ut)—k; ()Ll,l —2)»1—|—)»1+1) cos? (ut)=0.
(124)

Using the balance method, by equating the exponents
and the coefficients of cosX (), we get

BB —1) #0, (125)
3=p8-2, (126)
Jiap = bo)B2 P BB — 1) + i3] =0, (127)

A {—(al - blv)sz_z,B2 + bjwk — w — allcz}
—k; ()\l—l —2k1—|—)»1+1) =0. (128)

Solving the system (Egs. (125)—(128)) simultane-
ously, we get the solution set

B=-1, (129)
2 2,2
ciAy +2a1B
=t 130
v 2, B2 (139)
B 2a1/<2A1 — Cl)\? + 2k; ()\1_1 — 20 + )‘l+1)
@= 204k — 1) '
(131)

equating the two expressions for the soliton speed v
from (116) and (130) implies

B (1 = bix)ey

2u? (blza) —ajkb; — al)
which kicks in the constraint
(1 — by)qy (blza) — ajb; — al) > 0. (133)

Therefore, we obtain the following singular periodic
solution:

1-b
gP(x, 1) = a sec |:\/2( ( et Al

Al (132)

blzw —ajkb; — al)

N [x B (bzw - 2a1/c) t] ] ol (—KxFwr+0)
1— bk
(134)

where w is given by Eq. (131).
It is easy to see that solution (134) can reduce to
bright 1-soliton solution as

bik — 1
g®(x, 1) = A sech |:\/2( (bik = De oy

blza) —ajkb; — a/)

x 1y — bjo —2a1k ¢ ei(kaerH»G)7
1— bk

(135)
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where o is given by Eq. (131).

4.2 Power law nonlinearity
For power law, the coupled NLSE modifies to [6-9,43]

. (1 [ [
i +ag) + biay) + i 1lg1?"q®
—K [q(l—l) —2¢" + q(l+1)} .

In this case, Eq. (119) gives

(136)

d’v,
(a; — blv)Bzﬁ + U (ble —w— ale)

+c U12n+1 — ki [Ulfl —2U; + Ul+1] =0.
137)
Using the assumption

Ui(t) = N cos? (ut), (138)

in Eq. (137), we obtain
UD)rr = =12 B2 cosP (ur)

+ M BB — 1) cos” 7 (uo). (139)
Substituting Eqs. (138) and (139) into Eq. (137), we
have

Al [—(a - bv)Bzuzﬁ2 + bwk — w — aKZ] cos? (ut)
+ (@ — bv)B*p?B(B — 1) cosP 2 (u7)
+6M12n+1 cos@+DB (1)
— kg (M1 = 20 + A1) cosP (ur) = 0. (140)

Using the balance method, by equating the exponents
and the coefficients of cosX (), we get

BB —1) #0, (141)
Qn+1)B=p-2, (142)
Ji(ag — bpo) B> B(B — 1)
+ortth =0, (143)
Al {—(al - blv)sz,2/32 + bjwk —w — allcz}
—ki (M—1 = 2A1 + Ai41) = 0. (144)

Solving the system (Eqgs. (141)—(144)) simultane-
ously, we get the solution set

p=—1, (145)
n

n2caF + (1 +n)a; B2 p?

T A+npBu?

(A mapPiy — e "+ (4 )k (a1 — 20+ Aig)

@= (4w ik — 1) :

(146)

(147)
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Equating the two expressions for the soliton speed v
from (116) and (146) implies

1—b
B—+ ( _ e nAl, (148)
(1+n)u? (bl w —ajkb; — al)
which forces
(1 = bic)es (bfw — aihy — a,) > 0. (149)

Hence, one recovers singular periodic solution:

q(l)(x,t) =N sec% J

(1 = byx)ey
20— _
(I+n) (bjo —akb; —q

n
ni;

“x — biw —2aik 1| el (Crxtor+o)
1 — bk

(150)
where w is given by Eq. (147).
It is easy to see that solution (150) leads to bright
1-soliton solution:

(bix — ey
20— _
(I +n) (bjow —akb; —q

ol bjw —2aix i | ei(rxtort)
1 -0«

(151)

I
qg®(x, 1) = ) sechn J niy

where w is given by Eq. (147).

4.3 Parabolic law nonlinearity

In this case, the governing equation reduces to [6—9,43]
(i /

iq” +aiql) + big) + (Sz g1 + Iq“)l“) q"

=k [q(l—l) _ Zq(l) +q(l+l)] . (152)

where 1 <[ < N. The real part equation therefore is

d*u,
(a; — blv)BZ—l + U (bla)/c —w— a1K2)
dr?
+& U4+ m U~k (U= = 2U; + Upyr) = 0.

(153)
We then assume that Eq. (153) has the following formal
solution:
Ui(r) = A1 (G (f))%, A #0 (154)
where A; are constants to be determined later and G
satisfies Eq. (83).
Thus, we obtain



Optical solitons in nonlinear directional couplers

1943

2 (3 3 18
(a; — bjv)B ZAIGZ — A5G + ZAl
+ A (ba)K —w— aKZ) +§ZAZ°’G%

+MAIG? =k (A1 — 241 + A1) = 0. (155)

Then, equating the coefficient of each power of G to
zero, we obtain a system of nonlinear algebraic equa-
tions and by solving it, we get

_ 4 Al +3B%q

) 156

3B2p; (156)
3

Sp— (157)
4AZT]]

3P A+ 16A1aik %+ 16k, (Aj—1 —2A1+ A1)
w =
16A;m; (b — 1)
(158)
where B, k, A;j, k; are arbitrary constants.

Equating the two expressions for the soliton speed
v from (116) and (156) implies

247/ (T =bi)

B=+ (159)
\/3 (blzw —aibjx — al)

as long as

n (1 — byx) (blza) —aibjxk — a;) > 0. (160)

Thus, we obtain the exact traveling wave solution of
Eq. (152) as

3 3(1 =b
gD, 0 = _& 1 & tanh & 3 ( 1)
8 4 n(bjw — aibik — ap)

1

< (x— biw — 2a1x t ’ ol (—Kx+w1+0)
1 — bk ’

(161)

which is a dark 1-soliton solution and a singular 1-
soliton solution given by

3 3(1 = b
gV x, 1) = _3& 1 =+ coth s 5 ( 1)
81 4\ by — abik — ay)

2
o — biw — 2a;x ; o (—Kxtor+6)
1— bk ’

(162)

where o is given by Eq. (158).

4.4 Dual-power law nonlinearity

For dual-power law nonlinearity, the governing equa-
tion is [1-6]

. (1 1
ia” +aq®) + gl + (&1a0P" +n1gV1") g

—k [q“—l) Ny PO q““)] . (163)

where 1 <[ < N. The real part equation therefore is

d?u,
(a; — blv)Bz—zl + U (bla)ic —w— ale)
dr
+& UM 4 U™ —ky (Uimy =201+ Upy) = 0.

(164)

We then assume that Eq. (164) has the following formal
solution:

Ui(z) = AiGo (t), Al #0 (165)

where A; are constants to be determined later and G
satisfies Eq. (83). Thus, we obtain

A1G2 G+—

2n? 4n2

142 Ars(1 82
((ll—blU)Bz +2n _ 1 ( +l’l) Al
4n?

+ A (b,wx —w— a,xz) +EAPTIG 4 AT G2

—ki (A1 —2A; + A1) =0. (166)

Then, equating the coefficient of each power of G to
zero, we obtain a system of nonlinear algebraic equa-
tions and by solving it, we get

_ A4n?m A" + (14 2n) B2
U= (1 + 2n) B2D,
(14 2n)g

§=—— - 168
2(1 +n)A?"y (168)

; (167)
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(14 20)EF A; + 4(1 4+ n)* Ajayic®n + 41 + n)kymy (Aj—1 — 2A; + A1)
w =

(169)

41+ n)2 Ay (b —1)

where B, k, Aj, k; are arbitrary constants.

Equating the two values of the speed v from the
imaginary part equation (116) and real part equation
(167) gives the free parameter

2nA /i (T = bix)

B =+ (170)
\/(1 + 2n) (blza) —aibjk — al)

which therefore induces the constraint

n (1 — bjx) (blza)—albllc —a;) > 0. (171)

Thus, we obtain the exact traveling wave solution of
Eq. (163) as

(I +2mf
41 +n)m

o n§; (1 +2n)(1 — bik)
20 +nm)\ n (blzw —aibjk — ap)

1

n
x x— M t ei(—Kx+a)t+6)
1 — bk ’

(172)

g, 1) = [ [1 & tanh

and

gV, 1) = {_ (1+2n)g

40 +nm)m
y né&; (I 4+2n)(1 — bix)
20 +n)\ (b,zw —aibik — ap)

1
n
w (x - (bro=2ax), "
1 — bk ’

(173)

[1 £ coth

which are dark and singular 1-soliton solutions respec-
tively, where w is given by Eq. (169).

5 Multiple-core couplers (coupling with all
neighbors)

The governing equation for multiple-core couplers,
where coupling is with all neighbors is [6-9,43]

N I
igl” + aig) + bigy) + e F (190F) g

N
= Z kimg™. (174)
m=1

@ Springer

where | </ < N and k;,, represents the coupling
coefficient with all neighbors. The solution hypothesis
is taken to be the same as given by (115). Substituting
this hypothesis into (174) and again splitting into real
and imaginary parts, one obtains the same speed of
solitons, as in (116), that is valid for all types of solitons
in all nonlinear media considered in this paper. The real
part equation now is

%P %P )
a’_axZ ryrm + P (bla)K —w—ak )
N
+c F(PPYP =D ki P = 0. (175)
m=1
Under the traveling wave transformation
Pi(x,t) =U(r), =B —vt) (176)
we have
d*U,
(a; — blv)B2—ZZ + U (bla)/c —w— a1K2)
dr
N
+a FUDU = D kinUn = 0. (177)
m=1
5.1 Kerr law nonlinearity
For Kerr law, governing equation is [6-9,43]
. (1 !
ig” +aig®) + bigly + i lg® g
N
= > king™. (178)
m=1
The real part equation (177) therefore reduces to
d*U
(a; — blv)Bz—l + U (bla)/c —w— alkz)
dr2
N
+a U= kimUp = 0. (179)
m=1
Using the assumption
Ui() = ki cos” (uo), (180)
in Eq. (179), we obtain
Un)r = = 211 cos” (u)
+u’MB(B — Deos’ P(ur). (181
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Substituting Eqgs. (180) and (181) into Eq. (179), we
have
A [—(al - blv)BZ/Lzﬂz + bjwk — w — alKZ] cos? (ut)
+ il — bo)B*u*B(B — 1) cos? 2 (ut)
N
+C])»? cos? P () — Z kimAm cos? (ut) = 0. (182)
m=1

Using the balance method, by equating the exponents
and the coefficients of cosX (-), we arrive at

BB —1)#0, (183)
36=p5-2, (184)
lar — bo) B2 BB — 1) + e =0, (185)

M {—(al — blv)Bz,uzﬂ2 + bjwk — w — al/cz}

N
- Z KimAm = O. (186)
m=1

Solving the system (Eqgs. (183)—(186)) simultane-
ously, we get the solution set

B=—1, (187)
A + 2a; B2
2b; B2 2
2apic®hy — i3 + 23N ki
o = Ak — > et kimAm (189)
20 (b — 1)

equating the two expressions for the soliton speed v
from (116) and (188) implies

1—b
pog | L-bda (190)
212 (bl w — akb; — al)

which leads to the integrability criteria
(1 — by (b,za) — akby — a,) > 0. (191)

Consequently, a singular periodic solution is recovered:

1-b
q(l)(x, 1) = Ajsec ( 1) A
2 (blza) —ajkb; — al)

x {x - (M} ,) el (—rx+01+6)
1— bk
(192)

where w is given by Eq. (189).

It is easy to see that solution (192) reduces to bright
1-soliton solution:

(b — Dy
2 (hlzw —ajkb; — al)

q(l)(x, t) = A; sech J A

o bjw — a1k o] | eirxrorto)
1 — bk

(193)

where w is given by Eq. (189).

5.2 Power law nonlinearity

For power law, the coupled NLSE modifies to [6-9,43]

N
(. I
iq!” +ag®) +biay) +clg®1q? =" king™.
m=1
(194)
Therefore, the real part equation reduces to
d’v,
(a; — blv)Bz—l + U (b]a)K —w— a1K2)
dr?
N
+a U = kinUn = 0. (195)
m=1
Using the assumption
Ui(x) = cos” (uo), (196)

in Eq. (196), we obtain
(U)) gy = —p2B21s cos? ()
+uhB(B — 1) cos” 2 (ur). (197)

Substituting Egs. (196) and (197) into Eq. (195), we
have

M {—(al —blv)Bzu2ﬂ2+b;a)K —w— a]K2} cos? (ut)

+ iy — biv) B u?B(B — 1) cos’ 7 (u1)
N
+ CIAIZ"H cos®mDB (1) — Z KimAm cos? (ut)=0.
m=1

(198)

Using the balance method, by equating the exponents
and the coefficients of cosX (), we get

BB —1) #0, (199)
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@n+DB=p-2, (200)
d(ar —b)B* BB — 1) + e =0, (201)

M {—(al — blv)Bz,uz,B2 + bjwk — w — al/cz}
N
= > kimhm =0. (202)
m=1

Solving the system (Egs. (199)—(202)) simultane-
ously, we get the solution set

P —— (203)

n
n2c a2 + (1 + nya; B
a (14 n)b; B2 2
1+ I’l)a[Kz)n[ - clkll+2" + (1 +n) Z%=1 kimAm
- (I +m)r (b — 1) '

, (204)

w

(205)

Equating the two expressions for the soliton speed v
from (116) and (204) implies

1—b
B—+ ( _ e nAlL (206)
(1 +n)u? (bl o —aikb; — al)
whenever
(1 = bic)ey (blza) _ ajchy — a,) 0. (207)

Thus, the singular periodic solution is given by

(1 = by
1+n) (b%w —ajkb; — al)

oy (e = 2ac, el (—ex-+or+)
1 — bk

(208)

i
g, 1) = A sec J niy

where w is given by Eq. (205).
Additionally, bright 1-soliton solution retrievable is:

(bik — )¢y
1+n) (blzw —ajkb; — al)

o bjw —2a1k i| [ ei(rxroro)
1— bk

(209)

1
g (x,t) = A sechi J niy

where w is given by Eq. (205).
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5.3 Parabolic law nonlinearity

In this case, the governing equation reduces to [6—9,43]

(s 1
igl” + g + big + (1977 +m 1g01*) g

N
= > kimg™. (210)
m=1
where 1 <[ < N. The real part equation therefore is

d’U
(a; — blv)Bzd—zl + U (bla)/c —w— ale)
T

N
+E U +m U =D kinUn =0. @211)
m=1

We then assume that Eq. (211) has the following formal
solution:

Ui(t) = Al (G (), Al #0 (212)

where A; are constants to be determined later and G
satisfies Eq. (83). Thus, we obtain

2 3 3 1 82
(a1 — biv)B (ZAZGZ — A)5G? + ZAI)
+ A (ba)K —w — axz)

N
FEAJGE 4 mATGE =D kA, =0, (213)
m=1
Then, equating the coefficient of each power of G to
zero, we obtain a system of nonlinear algebraic equa-
tions, and by solving it, we get

_ 4mA} +3B%q

, 214

3B2%p; (214)
3

§=— i’ , (215)
4Al ni

367 A + 16 A aix>n; + 161 S kimAm
w =
16A;n; (bjk — 1)
(216)
where B, k, Aj, ki, are arbitrary constants.

Equating the two expressions for the soliton speed
v from (116) and (214) implies
2A2m (T=b
Bt 7~/ ( 1K) 217)
\/3 (blza) —aibjk — a;)
for

n (1 —bix) (blza) —aibjk — al) > 0. (218)




Optical solitons in nonlinear directional couplers 1947
Thus, we obtain the exact traveling wave solution of + Ay (b[w/c —w—q K2)
Eq. (210) as N
3 +EATTIG + AT G = D ki An = 0.
q(l)(x, t) = 8— 1 &£ tanh m—=1
(224)

i 3(1 — bix)
4 l(b w — aibjk — ay)
( (blw 2a1K) t))] }; el (Kx+wi+0).
1 — bk

(219)

and

gV, = |

1 &+ coth
3(1 — bik)

&
4 (b w — aibjk — ay)
( (blw 2a1:<) t))] }; ol (—kxtor )
1 — bk

(220)

which are dark and singular 1-soliton solutions respec-
tively, where w is given by Eq. (216).

5.4 Dual-power law nonlinearity

For dual-power law nonlinearity, the governing equa-
tion is [6-9,43]

l l
ig” + gl + bigly) + (819"

N
+lg @) g0 = kimg ™. (221)

where 1 <[ < N. The real part equation therefore is

d’v,
(a7 — blv)B2d—zl + U (bla)/c —w— a[Kz)
T

N
= > kimUn = 0. (222)
m=1
We then assume that Eq. (222) has the following formal
solution:

Ui(t) = AiG% (1),

+'§l U[2)’l+1 + 77] Ul4n+1

A #0 (223)

where A; are constants to be determined later and G
satisfies Eq. (83). Thus, we obtain
142n 2

Ai8(1+n)
— bjv)B? A
(a1 — byv) [ 12 16— 2 ti2

Then, equating the coefficient of each power of G to
zero, we obtain a system of nonlinear algebraic equa-
tions, and by solving it, we get

B 4n’n A" 4 (1 +2n)B%q

(1 4 2n)B2b, ’ (225
A +2mg (226)

2(1 +n)A?"y
w=0, (227)

A+ 2mEPA + AU+ )2 Ay + 41+ n) SN ki An
4(1 4 n)?> Ay (bix — 1)

(228)

where B, k, Aj, ki, are arbitrary constants.

Next, equating the two values of the speed v from the
imaginary part Eq. (116) and real part equation (225)
gives the free parameter

2n AP (T = bix)

B=+ (229)
\/(1 + 2n) (blza) —aibjk — al)

as long as

(1 = byic) (b,%) — arhyic — al) 0. (230)

Thus, we recover exact dark and singular 1-soliton solu-
tions of Eq. (221), respectively, as

ey = | -0 +205
q (X,f)—[ 20+ mm 1 + tanh

y né (1 +2n)(1 — bik)
2(L4+n)\ mbiw — aibix — a;)

X (x — Ul‘))]}i ei(*Kx+wt+9), (231)

and

10} _ 1 (1 +2n)§
gV (x,t) = [ —4(1 Fom 1 &£ coth

y né; (I +2n)(1 — bik)
2(L4+n)\ mbiw — aibix — ay)

x (x — Ul‘))]}i ei(*l(x+wt+9), (232)

where w is given by Eq. (228).
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6 Conclusions

This paper secures soliton solutions to nonlinear direc-
tional couplers that come with four forms of nonlin-
earity. They are Kerr law, power law, parabolic law
and dual-power law. There are two integration schemes
adopted in this paper. These lead to bright soliton solu-
tion (for Kerr and power laws only) as well as dark and
singular soliton solutions (for parabolic and dual-power
laws of nonlinearity). The appropriate constraint con-
ditions are enumerated that secures existence of these
solitons. Additionally, for Kerr and power laws, sin-
gular periodic solutions are obtained as a by-product
since these give periodic blow-ups. The results of this
paper come with a lot of scope and hope.

Later, several perturbation terms will be taken into
account, and thus, the governing equation will be
extended which will lead to soliton solutions with
a generalized structure. These results are awaited at
this time although it is on the horizon. Additionally,
numerical simulations will be carried out using several
advanced techniques such as pseudospectral approxi-
mations, Jacobi-tau approximations, shifted Legendre
polynomials, collocation method and others [2-5,13].
These results will soon be available and reported.
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