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We report on the appearance of running transverse waves and zigzag instabilities in photorefractive counter-

propagating two-wave mixing with a single external feedback mirror.

These secondary structures are caused

by the sluggish temporal response of the crystal through the buildup of a reflection grating. We derive a
Landau-type equation for the critical mode amplitude above the primary instability threshold and compare it

with the results from numerical simulations in the case of low and high optical aspect ratios.

The effect of

intensity-dependent relaxation time on the formation of the spatiotemporal structures is discussed. © 2001

Optical Society of America
OCIS codes: 190.4420, 190.5330, 190.7070.

1. INTRODUCTION

Since the initial experimental observations of hexagonal
patterns’? that result from counterpropagation of two op-
tical beams in photorefractive (PR) crystals, pattern for-
mation through PR two-wave mixing has become a grow-
ing field of nonlinear optics. Owing to potential
applications for parallel optical data and image process-
ing by PR devices, much research effort has been invested
in the examination of the nature of transverse spatiotem-
poral structures in these systems.

In particular, the formation of patterns in counter-
propagating two-wave mixing with a feedback mirror has
been the topic of a number of papers that have appeared
recently. They were mostly experimental studies in
which the spontaneous formation of hexagons was
observed.>® Although hexagons were the predominantly
observed structure, other structures, such as stripes and
squares, have also been identified.® Theoretical investi-
gations have been few. They treated the onset of trans-
verse structures by means of linear stability analyses”®
and described the stabilization of hexagonal mode struc-
tures by using an amplitude equation formalism.® The
difficulties in analytical or numerical treatment of the
two-wave mixing equations in reflection geometry arise
both from the nonlocal PR medium response, which re-
sults in an energy transfer between the beams, and from
the fact that the photorefractive relaxation time is inten-
sity dependent.

In general, diffraction and nonlinear beam coupling
lead to the formation of transverse patterns. Optical
beams and the refractive-index grating that couples the
beams become spontaneously unstable against transverse
modulations. These patterns grow as an absolute insta-
bility out of the initially smooth beam and grating pro-
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files. The model for the PR grating response originates
from a charge-transport model formulated by Kukhtarev
et al.'% Rigorous solutions of Kukhtarev’s nonlinear ma-
terial equations are computationally expensive.!! In the
context of pattern formation through the interaction of
counterpropagating waves via reflection gratings, it is
particularly desirable to have an approximation of the
grating response that is as simple as possible but is still
good enough to account for most of the phenomena ob-
served. Otherwise this problem will quickly become un-
wieldy and render analytical and even numerical treat-
ment extremely difficult, even in the limit of one
transverse dimension.

A model of wave mixing that possesses such qualities is
introduced in Section 2. In addition to providing an ap-
propriate description of the pseudoequilibrium grating re-
sponse below the dynamic instability threshold,'? this
model is capable of elucidating the temporal evolution of
the medium response and has proved useful in applica-
tions to spatiotemporal pattern formation through two-
wave mixing and four-wave mixing in PR media.'®"1¢ In
Section 3 of the paper we deal with the linear and nonlin-
ear behavior of transverse patterns, and Section 4 brings
conclusions.

Although it may be imperative to move to two trans-
verse dimensions in numerical simulations to be able
properly to view the formation of patterns, massive com-
putational needs for high resolution in three spatial di-
mensions and prolonged observation in time make such a
move numerically expensive. Because of the analogies
between one-dimensional modulation and two-
dimensional stripe patterns we are convinced that the
one-dimensional study still reveals important features of
the appearance and the dynamics of transverse patterns.
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With one spatial dimension fewer to worry about, one can
apply the full numerical power to understand better the
onset of primary and secondary instabilities and their
long-time behavior. In such a frame of mind, we set out
to investigate analytically and numerically the formation
of patterns and the effects of intensity-dependent relax-
ation time on these patterns in the photorefractive feed-
back system.

2. THEORETICAL MODEL

The geometry of the standard setup for observation of
transverse patterns in two-wave mixing with reflection
gratings and one feedback mirror is presented in Fig. 1.
The wave-mixing process is described by the slowly vary-
ing envelope paraxial equations for the two beams:

A, + if*A, = —QA,, (1a)

—0,Ay + ifd*Ay = Q*A4, (1b)

where z is the propagation coordinate scaled by crystal
length L; f is proportional to the inverse of the Fresnel
number, f = (47F) ' = L/(2kqw?), where k, denotes
the wave vector within the crystal in the propagation di-
rection; and x is scaled by beam waist w,. @ is the am-
plitude of the reflection grating, whose temporal evolution
is described by a relaxation equation of the form

ALAL
I b

1d,Q@ + Q=T (2)

where I is the wave-coupling constant. In PR wave mix-
ing, 7(I) = (I,/)*tpg is, in general, the intensity-
dependent relaxation time of the crystal, with total inten-
sity I = |A4|? + |Ay|2 + I,. Exponent « describes the
characteristic behavior of the nonlinear charge diffusion
processes that are present in PR materials (see also Sub-
section 3.B below). Dark intensity I,;, because of ther-
mal background illumination, is considered small (I,
~ 107°%] ») compared with input pump beam I, = |A(z
= 0,x = 0)|2. As 7pgis a constant that depends only on
material properties, it defines a natural scaling of time.
The assumptions for Eqgs. (1) and (2) are that the dynam-
ics of envelopes is slaved to the grating amplitude, be-
cause of its slow evolution, and that the spatial distribu-
tion of @ is determined by the spatial distribution of the
beam envelopes.
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Fig. 1. Two-wave mixing configuration in reflection geometry:
M, feedback mirror; A, pump beam; A 5, reflected beam; @, grat-
ing amplitude; z, direction of propagation; x, transverse dimen-
sion; L, crystal length; D, distance to the feedback mirror.
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3. LINEAR AND NONLINEAR BEHAVIOR
OF TRANSVERSE STRUCTURES

Our investigation proceeds along two tracks, analytical
and numerical. Analytically, we perform a linear stabil-
ity analysis of Egs. (1) and (2), along the lines introduced
in Ref. 16. We do not restrict ourselves to stationary in-
stabilities but allow for temporal variation and determine
the primary instability threshold. Coupling constant I
acts as the bifurcation parameter. To describe pattern
formation beyond the primary threshold analytically, we
obtain a Landau-type equation for the critical mode am-
plitude by performing a multiple scale expansion of Egs.
(1) and (2). Therefore we consider the time and space
evolution of deviations a5 and g from the fixed-point
plane-wave solutions:

Al;Z(x’ Z, t) = A?Q(Z)[l + al;Z(x’Z’ t)]’ (Sa)

Qx,2,t) = Q°(2)[1 + q(x,2,1)]. (3b)

On substituting into Egs. (1) and (2), one obtains an
equivalent set of nonlinear wave-mixing equations for the
deviations, which reads as

day + ifdiay = T (a1 —ag —q — ayq),

1+
(4a)
7‘0
—d.ay + ifdiay = P Teler e+ ¢" +aig"),
(4b)
1+ r0\« 0
I1°)d,q +
N (I°)d,q + q
(@) — ag)(1 + a}) — r%af — a3)(1 + ay)
= (40)

%1+ a)(1 +af) + (1 +ay)(1l +al)’

where I°(z) = |A%(2)|? + |A(2)|? is the total plane-wave
intensity and r°(z) = |[AJ(2)|?/|A%(2)|? is the ratio of
plane-wave intensities, both of which, in general, depend
on longitudinal position z. Denominator N is identical to
the denominator of the right-hand side of Eq. (4¢c). Equa-
tions (4) are supplemented with the following boundary
conditions:

al(x’o’t) =0 (5a)

as(x, L, t) = VR(FT) Yexp(i $)FTa(x, L, t)]}. (5b)

The quantity ¢ = 2 fK2D/(n,L) is the propagation
phase, D is the distance to the feedback mirror, and K is
the wave vector of the spatial Fourier modes (FT denotes
a Fourier transform). R is the mirror reflectivity, and n
is the crystal’s homogeneous refractive index.

For the general procedure of multiple scale analysis in
a bulk medium, for which we follow an idea of Geddes
et al.,'" it is convenient to choose a real basis for the state
vectors of deviations by using the following transforma-
tion (see Appendix A): (ay,at,as,a3)T - U
= (Ul,Ug,U3,U4)T and (q,q*)T—’P:(Pl,Pz)T,
which brings Eqs. (4) into the general form
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‘Cz,xU + MOP = MI(P|U)’ (63-)
(Dos + D1(U) + Doy(U|U) + ..)P — AU
= Ni(UJU) + No(U[UJU) + .... (6b)

Here the matrices £, , and D; , are the spatial and tem-
poral derivative operators, respectively, M, and N, are
composed of the coefficients of the linear coupling be-
tween the field and the grating, and M, and N; are vec-
tors that describe nonlinear field—grating and field—field
interactions, respectively. Owing to the intensity depen-
dence of the PR relaxation time, the temporal evolution
contributes to linear D,, and nonlinear D;, terms (;j
= 1,2,..).

The multiple scale analysis for obtaining a Landau-
type equation is based on the fact that in the neighbor-
hood of bifurcation point I', the temporal evolution is
separable into fast and slow scales. For details of the
multiple scale expansion see Appendix A. The solution
ansatz in the 1st order introduces amplitude W of critical
mode K.. Expanding Egs. (6) to 3rd order of nonlinear-
ity results in resonant mode interaction in the amplitude
equation of the critical mode [see Eq. (A21) below]:

Tod,W = (T = T)W — g,|W|*W. (7)

This is the well-known Landau equation. It provides a
universal description of the self-organization of patterns
in one dimension,'® in which case the beam modulation
corresponds to a stripe pattern in two dimensions. The
critical mode amplitude acts as the order parameter.
The relaxation rate

1
7o = g—<vKE|Msr<I°>No|u5§j>, ®)
0

which is a function of « through 7(I%) = [I,/I°(z)]*7pg,
and the nonlinear self-coupling coefficient

8s = _<ch|ms - 6n3>, 9)

8o

together with g, = (ch|M0N0 - Z|u§{1£)), are defined
through scalar products that involve integrals over dz
and contain the linear eigenfunction u}{lﬂ)(z) of the critical
mode and those of modes K = 0 and K = 2K, [which ap-
pear in the 2nd order through m,(z) and n,(z); Eqs. (A22)
and (A23) below] multiplied by linear adjoint eigenfunc-
tion ch(z). The coefficients reflect the specific charac-
teristics of the photorefractive system under consider-
ation, and their numerical values are given in the
following subsections.

To corroborate our analytical results near the primary
threshold, and to investigate the system behavior far
above it, we performed numerical simulations of the fully
nonlinear system, using a split-step beam propagation
method developed earlier'® and appropriately modified to
account for the feedback mirror.

In optics, unlike in most of the hydrodynamic systems,
e.g., the beam profiles are constrained to a finite lateral
extent. A laser beam has typically a Gaussian envelope,
and the aspect ratio is low. A higher aspect ratio can be
achieved when the beam is broadened and a plateau
forms. To achieve high-aspect-ratio conditions for the
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simulations we chose the incident envelope of A; to have
the shape of a hyper-Gaussian beam of order n with the
envelope of A, obeying the mirror boundary condition:

Aq(x,0,t) = Aj exp(—x2"), (10a)

Ag(x,L,t) = —JR(FT) Yexp(i $)FT[A,(x, L, 1)]}.
(10b)

In performing the analytical treatment we have assumed
that the homogeneous fixed-point solution is infinitely ex-
tended; i.e. we restricted our analysis to an infinitely high
aspect ratio. As a consequence, one should expect to en-
counter discrepancies that become predominant for lower
aspect ratios when fewer modulations occur across the
unmodulated beam envelope.!® Here we report the re-
sults for n = 1 and n = 4, which roughly correspond to
low and high aspect ratios, respectively, in optical sys-
tems. The hyper-Gaussian beam profile (n
= 4) more closely approximates the assumption of an in-
finitely extended modulation made in the analysis. We
show that the discrepancies remain rather small in this
case.

The simulations are done for f = 0.016, which corre-
sponds to Fresnel number F ~ 5, and for a feedback mir-
ror with reflectivity R = 1 placed at the exit face of the
crystal (D = 0).

A. Constant-Relaxation-Time Approximation

The assumption of constant relaxation time has proved
useful in modeling the temporal evolution of spatiotempo-
ral structures in photorefractive wave mixing. Under
the approximation of constant relaxation time 7(I)
= 7pR, the linearized problem, including temporal varia-
tion, can be solved analytically, and a threshold equation
for the onset of primary instability will be obtained:

T
0 = cos(x1)cos(xa) + ECOS( $)cos(xg) + [K?

X

r
fK? = sin ¢>)sinc(xQ>

cos( ¢)cos(x1)

. 8
X sinc(yq) + >

+ sinc(xg), (11)

r
3 K sin( ¢>)) sinc(x1)

where x? = (fK?)? — I'?/4 and xi(\) = (fK?)? — g%/4.
Equation (11) reduces to Eq. (5) of Ref. 20 in the case of a
stationary instability (A, = i Im\, = 0). The temporal
variations in @ that are due to the sluggish PR response
result in the function

}\TPR

g\) =T (12)

)\TPR + 1 ’

The uniform plane-wave solution for the beams loses
stability through a saddle-node bifurcation at threshold
coupling constant I'.L ~ 3.819. The threshold behavior
at the primary instability for the model with (1)
= constant is displayed in Fig. 2 for growth rate o
= Re\ and oscillation frequency Im\. A small band
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about the critical wave vector has zero frequency. A pri-
mary instability in the form of stationary modulation
|W|cos(Kx + ) develops across the uniform solution,
with the critical transverse wave vector fK f ~ 2.592, and
the transverse phase shift i relative to the beam center.
In general, ¢ changes continuously, because of the trans-
lational symmetry. However, in our numerical simula-
tions with hyper-Gaussian beam profiles this symmetry is
broken, and ¢ may assume discrete values. Two
branches of the modulation are identified: those with
phases ¢ = 0 and ¢ = 7.

The spatial modes from numerical data are localized in
the near field and have a finite spot size in the optical far
field. Therefore a mode amplitude is taken as the ampli-
tude of the envelope of the corresponding wave packet.
The results are presented summarily in the bifurcation
diagram of Fig. 3. For mirror distance D = 0 the steady-
state amplitude of the modulation is calculated to in-
crease supercritically as |W| = [(I' — T',)/g,]"?, with g
~ 15.69 given by Eq. (9), and the threshold behavior is
similar to that of a second-order phase transition.

Both stable branches are shown in the diagram for both
n cases. Close to the predicted threshold the homoge-
neous solution becomes unstable: first the hyper-
Gaussian (n = 4) and then the ordinary Gaussian (n
= 1). The reason for this is that the hyper-Gaussian,
with its broad nearly constant intensity plateau, more
closely resembles the analytical assumption of an infi-
nitely extended homogeneous state. At the primary in-
stability threshold a stable modulation develops and
grows until the secondary instability threshold is ap-
proached. The primary modulation is a stationary wave
whose wave vector agrees with the calculated value from
the linear stability analysis. The analytical curve is also
depicted in Fig. 3. For n = 4 the overlap between nu-
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Fig. 2. (a) Growth rates (Re\) and (b) oscillation frequencies
(Im \) of spatial modes K with I'L = 3.9 slightly above threshold,
for the model with 7(I) = constant.
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Fig. 3. Bifurcation diagram of the primary and secondary insta-
bilities of beam A, at z = 0, displaying the amplitude of mode K,
as a function of I'.  Both the hyper-Gaussian (filled circles) and
the Gaussian (asterisks) cases are shown, as well as the ¢ = 0
(upper) and ¢ = 7 (lower) branches, obtained from numerical
simulations. Solid curves, analytically obtained branches; dot-
ted curves, unstable solutions. Dashed lines mark secondary
thresholds for different cases and branches. s’s, stable solu-
tions; u, unstable ones. TW’s and ZZ are placed where the
stable transverse wave and the zigzag, respectively, exist. PH
denotes the phase hop, and the arrow designates its direction.

merical and analytical data turns out to be rather good,
despite the still present difference between the high as-
pect ratio in the first case and the idealized infinitely high
aspect ratio in the latter case. Amplitude W of the criti-
cal mode and the overall pattern amplitude, which is a su-
perposition of the critical mode amplitude and amplitudes
of higher spatial harmonic modes, must clearly be distin-
guished. They certainly coincide only close to threshold.
However, the amplitude of the critical mode obtained
from analysis can still give rather accurate results, even
far away from threshold, depending on how significant
the role of contributions of higher orders in the expansion
is. On the contrary, as one might expect, the results for
the simple Gaussian beam profile differ considerably.

As the secondary instability threshold is approached,
different things happen, depending on the specific branch
that we are following. Hyper-Gaussian primary modula-
tion invariably loses stability to running transverse
waves (TW’s), depicted in Fig. 4(a). The threshold for the
¢ = a branch is lower than the threshold for the ¢ = 0
branch. The sources and sinks of the TW’s are situated
on the edges of the modulation-carrying wave. This situ-
ation is different from that of counterpropagating two-
wave mixing with an external electric field considered
earlier,'®2! in which the secondary source sits in the
middle of the wave and radiates TW’s left and right to-
ward the sinks at the edges of the wave. The wave vector
of a TW remains close to K,, and its frequency is Q7pp
~ 0.0084. The nature of secondary bifurcation is a
phase instability, and the threshold behavior is similar to
that of a first-order phase transition.

The evolution of the secondary instability of the Gauss-
ian carrier wave differs considerably from that of the
hyper-Gaussian. The behavior along the two branches
changes. The ¢ = 7 branch loses stability first; how-
ever, it does not develop TW’s but jumps over to the ¢
= 0 stable branch by performing a phase hop, as is pre-
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sented in Fig. 5. The sequence of events that leads to the
phase-hop instability is shown in Fig. 5(a). Starting from
the initial unstable fixed point, the system visits the
= a branch (repeller). The orbit turns out to be a saddle
focus, and this branch, for the given value of T', is also un-
stable. The system then performs a phase hop to reach
the stable ¢ = 0 branch (attractor). We should note
that, depending on the perturbation of the initial unstable
fixed point, the system may directly revert to the stable
attractor without visiting the repeller first.

The secondary instability of the # = 0 branch of the
Gaussian wave [Fig. 4(b)] is not a simple TW. We refer
to it as a zigzag instability because of its appearance:
The traditional zigzag instability is present in 2D systems
only. Apparently, time acts as the second dimension
here. Zigzag instability consists of two superposed
waves, a running TW and a second wave, with its own
wave vector and frequency, riding on it. Hence the sec-
ondary instability in this case can be understood as mo-
tion on a torus achieved by two Hopf bifurcations from the
primary modulation. The two wave vectors and the two
frequencies are incommensurate. We did not attempt to
drive the structure to spatiotemporal chaos.

B. Intensity-Dependent Relaxation Time

Results presented in Subsection 3.A are valid only under
the assumption that the excitation and the recombination
of charge carriers that lead to the photorefractive effect
have the same time evolution over the entire interaction
region. The nonuniform distribution of the total light in-
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x/ W, Kwy/2m

-4 -2 0

[av)
N

Fig. 4. Transverse intensity profiles of beam A, as it leaves the
crystal at z = 0, above the secondary instability threshold. (a)
Developing a running transverse wave in the near field for n
= 4,4 = m,and 'L = 4.5. (b) Zigzag instability for n = 1, ¢
= 0,and 'L = 5.2. (c) Far-field pattern of (b) with the pump
beam subtracted.
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Fig. 5. Intensity of the phase-hop instability at 'L = 4.9 for the
Gaussian input beam. (a) Intensity of I, in the beam center at
the exit point as a function of time. uFP, R, and A, unstable
fixed point, repeller, and attractor, respectively. (b) Transverse
intensity profile I, in the near field as a function of time. (c)
Far-field pattern of (b) with the pump beam subtracted.

tensity I(x,z), which is due to pump depletion along the
propagation direction and to spatiotemporal modulation
in the transverse plane, results in a photorefractive time
constant that varies in various regions within the crystal.
The PR medium reacts faster in more-illuminated re-
gions, and the buildup of the refractive-index changes
proceeds at different paces. As a consequence, the
charge transport yields an intensity-dependent photore-
fractive relaxation time, of the form 7(I) = (I,/I)"7py.
Nonlinear material response and nonlinear charge diffu-
sion processes in general lead to the values of xk # 1. In
particular, numerical investigation of the Kukhtarev
band-transport model has been shown to yield a sublinear
dependence!! with « ~ 0.7, which is characteristic of in-
hibited diffusion processes. In the standard Kukhtarev
model, assuming a linear medium response, the time con-
stant is calculated to be inversely proportional (x = 1) to
the total intensity, and Eq. (2) can be written as

TPRIpé’tQ + IQ = FAAIAAEc . (13)

Owing to this intensity dependence of the temporal evo-
lution, the linear stability of transverse modes depends on
the total plane-wave intensity 1°(z) through

AT(I0)

g\) =T
We solved this nonautonomous stability problem [cf. Eq.
(A14)] numerically. The threshold of the primary insta-
bility for the model with 7(I) and « = 1 is displayed in
Fig. 6. The critical values I'.L and fK? remain unaf-
fected because the type of instability is again a saddle-



510 dJ. Opt. Soc. Am. B/Vol. 18, No. 4/April 2001

(a)

0.001 ' ' ' '

-0.000

Re A

-0.001

-0.002 . . .

(b)

0.002 T T T T

0.001f E

<
g —-0.000

-0.001F E

-0.002 : . \ L
0 1 2 3 4 5
fK?
Fig. 6. (a) Growth rates (Re \) and (b) oscillation frequencies
(Im \) of spatial modes K with I'L = 3.9, slightly above the pri-
mary threshold, for the model with 7(I) = 7pgl,/I.

node bifurcation of the critical mode. All modes turn out
to be stationary in this model. The stabilization of the
pattern amplitude in Eq. (7) is attained through the same
nonlinear coefficient, g, ~ 15.69, independently of «.

One specific feature that we want to discuss in more de-
tail concerns the linear growth of pattern amplitude,
given by the growth rate Re N\. In contradirectional beam
coupling with a feedback mirror and R = 1, the total in-
tensity decreases exponentially along the propagation di-
rection I°%z) = I°(0)exp(—Tz). Hence the relaxation
time of the crystal 7(I°) and, according to Eq. (8), 7o, in-
creases considerably near z = L and, because of the coun-
terpropagation of beams, slows down the dynamics
throughout the crystal. The critical linear growth rate,
which is implicitly calculated from the semianalytical
threshold condition for this model, is given by

(15)

70

B (ax) B
o.(I') = Re o C(F -ry) =

and can be interpreted in two ways: On one hand, it is
the slope of A when bifurcation parameter I' passes
through the critical value. On the other hand, in view of
amplitude equation (7), it provides a time scale for the
temporal evolution of a small perturbation of the mode
amplitude. We have chosen « in the interval from 0.0 to
1.0 to be able to compare the approximate model for
7(I) = constant (x = 0), with the physically more appro-
priate model, containing the values of « closer to 1.0.
The dynamics of the transverse modulation (Fig. 7) grows
on a time scale that is ~2 orders of magnitude larger:
To(k = 0) =~ 0.45, whereas 7y(k = 1) ~ 24.9, with 7y(«)
given by Eq. (8).

Figure 8 displays the dynamics of relaxation toward a
stationary pattern obtained from numerical simulations.
Although pattern dynamics is described by a real Landau
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equation, one finds oscillatory behavior for larger pertur-
bations. For x = 0 it relaxes fast, whereas for x = 1 the
oscillations vanish but the pure relaxation behavior of a
small perturbation persists for an exceedingly long period
of time [far beyond 10*rpg; Fig. 8(b)], in accordance with
the analytical prediction.

Secondary instabilities appear spontaneously for the
model with k = 0. For « = 1 such instabilities have not
so far been seen in our numerical simulations. In fact,
the secondary patterns for « = 0 at high and low aspect
ratios are strongly suppressed when they are put into the
other model as an initial condition (Fig. 9). This result
points to the fact that we must be far away from any pos-
sible secondary threshold. For finite Gaussian or hyper-
Gaussian beam profiles the time constant at the trans-
verse beam edges, where the temporal evolution is
governed by the dark intensity only, is increased even
more dramatically. As a consequence, in photorefractive
crystals the dynamics is dominated by bright regions, and
secondary instabilities, such as running transverse waves

100.0

10.0

To

1.0

0.1 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
K

Fig. 7. Logarithmic plot of linear coefficient 7, of the amplitude
equation for various values of sublinearity parameter «.
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Fig. 8. Transient temporal evolution of the amplitude perturba-
tion for n =4 and ¢ =0 at 'L = 4.6, for (a) x = 0 and
(b) k = 1.
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~. 4000
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0
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Fig. 9. Spatiotemporal beam profiles displaying a period of
20007pg of the secondary attractors [cf. Figs. 4(a) and 4(b)] for
the model with « = 0, which is then utilized as an initial condi-
tion for the model with « = 1. (a) Disappearing running trans-
verse wave in the near field forn = 4 and 'L = 4.6. (b) Disap-
pearing zigzag instability forn = 1 and I'L = 5.2.

that originate at the beam edges, should have much
higher threshold or might even be prevented from appear-
ing.

In addition, one finds that the translational symmetry
is recovered and that the stationary modulation of pat-
terns can have arbitrary values of . For the low-aspect-
ratio systems this leads to strongly asymmetric trans-
verse profiles [Fig. 9(b)].

4. CONCLUSIONS

We have presented numerical simulations of transverse
structures with high and low aspect ratios in a photore-
fractive feedback system. The amplitude of the critical
mode for the high-aspect-ratio beam profile follows the
parabolic shape given by the amplitude equation of the
Landau-type well, even far above the primary threshold.
Allowing for temporal evolution in the linear stability
analysis, we have confirmed that for mirror distance D
= 0 any model with an inhibited diffusion coefficient «
< 1 will show stationary patterns, and the common as-
sumption that N\ = 0 is justified here.

We have compared the results for the two models, con-
sidering the generic property of the intensity dependence
of photorefractive relaxation time. The photorefractive
nonlinearity is the same for both models. The intensity
dependence has no influence on the steady state or on the
shape of transient oscillations, and it does not change our
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results qualitatively near the primary instability point.
In fact, this turns out to be true if the primary instability
is of the oscillatory type, for example, when traveling
wave patterns occur in the wave-mixing geometry with an
externally applied electric field.2! However, it strongly
affects the time scale of the dynamics and the occurrence
of secondary patterns. The patterns appear spontane-
ously in the case of the model with xk = 0 but seem to
have a high threshold for k = 1. Whether there is a sec-
ondary threshold at all for some value of the coupling
strength remains to be seen. Because the oscillation fre-
quency of transverse waves for k = 0 is much smaller
than the frequency of transient oscillations, we expect
this to be true also for any secondary pattern that might
appear in the intensity-dependent model. This makes
their observation difficult.

APPENDIX A: MULTIPLE SCALE ANALYSIS
FOR PHOTOREFRACTIVE WAVE MIXING

In what follows, we present the details involved in using
multiple scale analysis to obtain amplitude equation (7)
for pattern formation in PR wave mixing.

The general form of wave-mixing equations (6), which
we again list here for completeness:

L, .U+ MP = M,(P|U), (Ala)
(Do’t + Dl,t(U) + Dg,t(U|U)+)P - N()U
= NM(U|U) + NM(UJU|U)+..., (Alb)

builds the starting point of our expansion procedure,
where we follow an idea of Geddes et al.1” for wave mixing
in Kerr media that we have modified to be applicable to
the grating dynamics that occur in PR wave mixing.
These equations are obtained from Egs. (4) by a basis
transformation from complex vectors of deviations to a
real (4 + 2)-dimensional vector space:

1 1 -1 -1

Ul ay

v, | =i i =i il a

Us] 11 1 1 1 ||an] @2
*

Us S R

Pl) _ 1 1 q)

(P2 - (_i e (A2b)

We prefer the (4 + 2)-dimensional to the 6-dimensional
vector space used by Lushnikov® because the grating vari-
ables can be eliminated at each order of the expansion,
and one is left with a 4-dimensional problem instead.

Equations (Al) are general in the sense that they de-
scribe the behavior of wave mixing independently of
whether the interactions of field and grating variables
originate from two- or four-wave mixing, and they apply
to both stationary and oscillatory instabilities.

The notation (U|U) and (U|U|U) denotes products for
different quadratic and cubic nonlinearities. For the PR
two-wave mixing discussed in the text, the general inter-
action matrices and vectors are given here for R = 1.
The spatial and temporal derivative operators are
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a9, —T —f* 0 0
fo? g, 0 0
L, = A3
0 o 4 | @®
0 0 fi* o,-T
Dy = 7(I%)0; + 1, (A4)
K
Du=-avu%Uw“ (A5)

K
Dy, = —1—67(10)[U§ + UZ-3U%+ U3

- 2(k — 1)U%4,, (AB)

where the matrices D;, have been reduced to scalar op-
erators because 7(I°) is real valued. The linear coupling
matrices read as

0 0
0 0
MOZF 1 0 5 (A7)
0 1
0 0 0 O
N(): 0 0 0 1}, (A8)

and the nonlinear field—field and field—grating coupling
results in the vectors

P, P, 0 0

U,
ryp, -P, 0 0 U, "
Ml_ Z 0 0 7P1 7P2 U3 ) ( )
o o -p, P, | Us
1/ U2+ U2
N = _Z(Ule + UsU,)’ (A1O)
1 2U4(U? + U?)
Nz = _ 2 2 _ 172 24 |-
16|2U,U U3 — Uy(U7 + U; — U3 + UY)
(A11)

The multiple scale analysis is based on the fact that in
the neighborhood of a bifurcation point the temporal and
spatial evolution are separable into fast and slow scales.
PR coupling strength I'" is the bifurcation parameter, and
expansion parameter e scales as the distance from the
critical point, I',, at which the modulational instability
starts growing. Considering spatially homogeneous dis-
tribution of modulation to describe the pattern through a
Landau-type formalism, one expands the bifurcation pa-
rameter, the temporal variable, and the field and grating
amplitudes in terms of e

F=T,+ WV + TP+ | (A12a)
t =T+ €Ty + €Ty+..., (A12b)
U= Ul + &% + &P+,

(A12¢)

P = PV + 2P? + &PE+ | (Al12d)

Sandfuchs et al.

The ') are yet unknown quantities to be determined by
the multiple scale analysis. As a consequence of these
expansions the general interaction vectors and operators
are expanded: M; = M + eMV+. and £, = LS,
+ eL™+..., where the unknown part of the bifurcation
parameter are factored out: £ =T'VL, e.g.

For simplicity, one usually chooses the scaling expo-
nent such that v = 1/2, therefore a priori assuming a spe-
cific scaling behavior. We have taken v = 1, which leads
to the same amplitude equation and, in addition, provides
the correct scaling behavior to correspond to the charac-
teristics of the underlying bifurcation.

Collecting all terms that are linear in € yields the linear
instability threshold; the corresponding solution ansatz
introduces the order parameter. Higher orders in € de-
scribe the nonlinear interaction of spatial modes and re-
sult in the amplitude equation for the order parameter.

In the first order of € one recovers the linear problem:

£ 0 + MGPY =0, (A13a)

Do, P — NUM = 0. (A13Db)

At this point we briefly outline the results from linear sta-
bility analyses.”®!® The deviations here can be consid-
ered small perturbations, and they are expanded in the
transverse Fourier (x — K) and in the temporal Laplace
(Ty =t — \) space, yielding an algebraic expression for
PV, The linearized equations are cast into matrix form:

[L.(K) + MoDy(\) TN UL
=[d, — A(z;\, K)]JUY = 0, (Al4)

where the superscript ¢ is discarded because I is still a
free parameter at this stage. The stability matrix reads
as

r —-fK? 0 0
fK?2 0 0 0

0 0 0 —fK?|

0 0 fK* g(\)

The temporal variations in @ result in the function g(\)
given by Eq. (14) for the general case of an intensity-
dependent PR relaxation time, where \ is a complex-
valued number.

Owing to the intensity-dependent relaxation time in
PR wave mixing, Equation (A14) is nonautonomous and
can be solved only numerically. However, under the ap-
proximation of constant relaxation time, when g(\) is re-
duced to Eq. (12) such that the stability matrix is con-
stant in z, the formal analytical solution is given by a
linear flow matrix F(z) = exp(Az). Taking into account
the mirror boundary conditions [Eqs. (5)], one inverts
F(L) into a scattering matrix Sp(K). The poles of this
matrix determine the properties of absolute instability
and lead to the threshold condition [Eq. (11)].

After having discussed the linear instability threshold
we come back to the multiple scale analysis. To solve
Eqgs. (A13) we now make a specific ansatz for a stationary
stripelike pattern:

A= (A15)

U = u}{lc)(z)[W exp(iK.x) + c.c.],  (AlBa)
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PL = p(ch)(z)[W exp(iK.x) + c.c.].
(A16b)

At this stage we introduce mode amplitude W
= W(T,,Ts,...), which may still depend on the slower
time scales. The propagation of the transverse modula-
tion through the bulk medium is described by a longitu-
dinal eigenfunction, (1)(2) It is calculated from the
flow matrix of the linear stability problem:

(1)(2) = Fz;K )u<1>(0), (A17)

where the vector of initial condition u%)(O) belongs to the
kernel of the (the inverse of the) scattering matrix Sp(K,)
and where p(l)(z) = Nou%c)(z).

As soon as we go to higher orders in the expansion,
nonlinear mode interaction occurs and spatial harmonics
are generated. From the expansion in 2nd order we have

2 2 1 1 1 1
£2,U® 4 MEPE) = gl — pUPpD

+ M[POUD], (A18a)

DOTO P2 — A U® = _DO,TIP(D — DLTO[U(I)]P(I)

+ N [UD[UO]. (A18b)

For a stationary pattern we have Dyr = 1, and in Eq.
(A18b) we can solve for grating variable P» and elimi-
nate it from Eq. (A18a) in favor of an inhomogeneous or-
dinary differential equation for field variable U®’. The
inhomogeneous part generates spatial Fourier modes
K =0,K,, and 2K,. Consequently, the solution ansatz
is of the form

U = u?2) (2)(|W]? + ce) + u}?j(z)W exp(iK x)
+ ce] + ug,gc(z)[wz exp(2iK,x) + c.c.],

(A19)

where u}?'(z) are the longitudinal eigenfunctions in 2nd
order. Because the resonant mode is excited, formally a
new amplitude V must be introduced. However, nonlin-
ear contributions are not resonant in this order, and the
Fredholm alternative still yields an exponentially un-
stable behavior. To avoid secular terms we must require
that dp W = 0, which then puts the unknown =y,
and we can choose V = 0.

Saturation of the linear exponential growth is at first
achieved in 3rd order. From the expansion we have

['z,xU(S) + M%P(S) = @y — M£)2)P(l)
+ M{PUP]

+ MS[PP|UDT, (A20a)

Vol. 18, No. 4/April 2001/J. Opt. Soc. Am. B 513

DO,T0P<3) - N()U(3> = 7’D0,T2P(1) - DO,TIP(2>

— DLTO[U(I)]P@) — Dl,TO[U(Z)]P(l)

Dy 7, [UV]PD

Dz,To[U(1)|U(1)]P(1)
NI[UM[UP] + MUP[U]
+ NG [UD UL U], (A20Db)

Again, for a stationary pattern, Dor, = 1 and P® can be
eliminated. Nonlinear mode interaction generates reso-
nant and nonresonant modes. The Fredholm alternative
theorem applied to terms that arise from resonant mode
K, determines I''?’.  When we return to unscaled units,
Eq. (A12a) leads to amplitude equation (7):

700, W = (I — T)W — g,|W|?W, (A21)

J’_

with 7y given in Eq. (8). We recognize that up to 3rd or-
der none of the nonlinear temporal derivatives contrib-
utes to the dynamics of the Landau equation. Nonlinear
self-coupling coefficient g,, given in Eq. (9), depends on
the longitudinal eigenfunctions of 1st and 2nd orders
through

m, = 2 M{[pg’[ug)y] + 2M{[pio|uy]

[pi/[ufR 1 + M
1 2 2 1
n, = 2J\fl[u}{c)\u( Lol + 2NG[ugolug]

1 2 2 1
+ NGTUL ] + AG[u ]

(2) |u(1> (A22)

+ 3NG[ud[ufd|ud ], (A23)

where the eigenfunctions of the grating in 2nd order are
related to the field eigenfunctions by pi2'(z) = Nyud(z)
+ MN[u (lc)(z)\ <lc)(z)] for K = 0 and K = 2K,.

0. Sandfuchs’s e-mail address is oliver.sandfuchs@
physik.tu-darmstadt.de.
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