
1028 J. Opt. Soc. Am. B/Vol. 12, No. 6 /June 1995 M. Petrović and M. Belić
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We consider the theory of photorefractive ring oscillators, using our unified solution method. Both unidi-
rectional and bidirectional ring resonators are analyzed, based on the two-wave mixing process with crossed
polarization and the four-wave mixing process with parallel polarization in photorefractive crystals. We high-
light symmetries between the transmission and the reflection geometries of these processes and use them to
write analytical expressions for oscillation conditions in all the cases. Symmetry breaking is noted in the
four-wave mixing between the transmission and the reflection grating cases. An optical transistor based on
photorefractive rings is proposed.
1. INTRODUCTION
The ring resonator is one of the paradigms in nonlinear
optics.1 It is a popular choice for a unidirectional laser
cavity. It is the geometry of choice for investigations
of optical bistability. It is used in laser gyros, phase-
conjugate mirrors, light switches, interferometers, and
other optical and optoelectronic devices.

We consider a ring with a piece of photorefractive (PR)
crystal inserted as an active or passive optical element.
Such a device shows great potential for applications in PR
nonlinear optics.2 Various geometries of interest are pre-
sented in Fig. 1. Figure 1(a) represents a unidirectional
ring based on vectorial two-wave mixing (2WM) in PR me-
dia in transmission geometry (TG) when all fields are in-
cident upon the same face of the crystal; Fig. 1(b) depicts
a unidirectional ring in reflection geometry (RG) when
the fields are incident upon the opposite faces; Fig. 1(c)
represents the bidirectional ring based on four-wave mix-
ing (4WM), which can be TG or RG, depending on the
manner in which the interacting fields build diffraction
gratings. We discuss oscillation conditions for all these
geometries. We highlight symmetries among different
geometries and different processes. We propose an all-
optical device based on PR rings that operates as an op-
tical transistor.

The most comprehensive analysis of PR rings to date
was made by Yeh.2,3 However, his analysis was re-
stricted to 2WM unidirectional rings and 4WM bidirec-
tional rings with parallel polarizations and transmission
gratings. We generalize the treatment by including the
vectorial (cross-polarization) coupling and reflection grat-
ings. The solution method is also a generalization of the
method used by Gu and Yeh3 that we4 recently geared
for a more comprehensive treatment of different wave-
mixing processes.

There are two sides to the problem of PR rings. The
first one is the solution of wave-mixing equations in the
PR crystal subject to appropriate boundary conditions.
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The second is the analysis of oscillation conditions. The
method of solution is based on the fact that, when the dif-
fusion of photoinduced charge carriers is responsible for
the buildup of diffraction gratings, the coupling constants
of wave mixing are real and the phase of the grating
in question is constant.5 This statement applies equally
well to vectorial and scalar coupling and to TG and RG.
The oscillation conditions imply the application of condi-
tions for resonator mode oscillation.

There is an aspect common to both sides of the problem:
the question of phase shifts and frequency detunings in
the ring. It is known that the PR effect may induce a
phase shift in each of the mixing beams. These shifts can
be offset by cavity tuning. Conversely, cavity detuning
can be compensated by a PR phase shift. This suppos-
edly happens in some PR oscillators that spontaneously
detune from the pump frequency. However, such shifts
make the analysis complicated. In addition, compensa-
tion schemes might not work in bidirectional rings, in
which clockwise and counterclockwise optical paths might
not be the same (owing to nonreciprocity). This question
apparently has not been settled in the literature.6 To
make the analysis tractable we assume that the mecha-
nism for charge carrier redistribution is only diffusion, in
which case there is no PR detuning, and that the cavity
is tuned. For the 4WM bidirectional ring we assume in
addition that the optical paths are reciprocal.

Wave-mixing processes in PR crystals are governed by
the slowly varying envelope wave equations. For vecto-
rial 2WM and scalar 4WM they are of the forms

IAs
0 ­ sGQBp, IAp

0 ­ sGQBs , (1a)

1Bs
0 ­ GQAp, IBp

0 ­ GQAs , (1b)

IA1
0 ­ sGQA3, IA3

0 ­ GQA1 , (2a)

IA2
0 ­ sGQA4, IA4

0 ­ GQA2 , (2b)

where As, Ap, Bs, Bp and A1, A2, A3, A4 denote the waves
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Fig. 1. Photorefractive ring resonators considered: (a) 2WM
unidirectional ring with cross coupling in TG, (b) 2WM unidi-
rectional ring in RG, (c) 4WM bidirectional ring with parallel
coupling in either TG or RG.

that are mixed in the crystal and s ­ 6 is the parame-
ter controlling the geometry. s ­ 1 corresponds to RG,
and s ­ 2 corresponds to TG. I is the total intensity
(IA 1 IB in 2WM, I1 1 I2 1 I3 1 I4 in 4WM), Q is the ampli-
tude of the grating (AsBs 1 ApBp in 2WM, A1A3 1 A2A4
in 4WM). G is the wave-coupling constant, given in in-
verse centimeters. A prime denotes a derivative in the
propagation (z) direction across the crystal, and a bar
stands for complex conjugation. A steady-state, plane-
wave, degenerate situation is assumed. We should note
that Eqs. (2) for 4WM as written are good only for the
RG. To obtain the TG equations, in addition to taking
s ­ 2 one should exchange the fields A3 A4. We will

keep the RG notation, as we are more interested in the
RG case (TG has been adequately discussed by Gu and
Yeh3). However, when we want to complete the Gu–Yeh
analysis, or to draw one’s attention to the symmetries and
the symmetry breaking between TG and RG, we will use
both kinds of notation.

The notation could be made even more economical, be-
cause the method of solution for both 2WM and 4WM
is essentially the same. Nevertheless, we prefer to keep
the treatment of 2WM and of 4WM separate. Hence in
Section 2 we present an analysis of the cross-polarization
2WM ring oscillator, an analysis that to our knowledge
was not performed before. In Section 3 we perform a
similar analysis of the scalar 4WM ring in the RG. We
point out where and why an analogous Gu–Yeh analysis
of the TG ring in contrast had to be performed numeri-
cally. In Section 4 our results are discussed and conclu-
sions are drawn.

2. TWO-WAVE MIXING RINGS
The solution procedure has been described at length in our
other publications.4,5 Here we present only an outline
inasmuch as it is needed for the discussion of the ring
oscillators. As mentioned, the procedure is based on the
fact that the phase f of the grating amplitude is constant
for diffusion-dominated buildup of gratings. In that case
the phase shift between the light interference pattern and
the grating is py2, and the coupling constant G is a real
number. There exists a convenient independent variable
u, defined by

u0 ­ GjQjyI , (3)

in terms of which the original equations become linear.
The solution of Eqs. (1) is given by

As ­ As0csQd 1 sBp0 expsifdssQd , (4a)

Bp ­ Bp0csQd 1 As0 exps2ifdssQd , (4b)

Ap ­ Ap0csQd 1 sBs0 expsifdssQd , (4c)

Bs ­ Bs0csQd 1 Ap0 exps2ifdssQd , (4d)

where the functions ssQd and csQd, respectively, denote
the hyperbolic sine and cosine functions for s ­ 1 and
the cyclic sine and cosine functions for s ­ 2 and Q is an
abbreviation for u 2 u0. Again, f is the constant phase
of the grating (which can be set to zero). The solution
is given in terms of the initial values taken at z ­ 0.
Whereas this is natural in TG, in RG one must reexpress
the initial values in terms of the given two-point boundary
conditions:

As0 ­ Asd sechsud 2 Bp0 tanhsudexpsifd , (5a)

Ap0 ­ Apd sechsud 2 Bs0 tanhsudexpsifd , (5b)
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where u ­ ud 2 u0 and d denotes the thickness of the
crystal. The quantity u is the grating action. It is im-
portant in the overall discussion. In fact, to every crys-
tal one can assign its own grating action, which depends
on the beam-coupling strength and on the wave-mixing
geometry. As a rule, the grating action must be deter-
mined numerically. The complete solution also requires
the knowledge of u0 as a function of the boundary condi-
tions and of u as a function of z. However, in our anal-
ysis we need only the values of the fields at the entrance
and the exit faces of the crystal.

We determine the function Qszd by inserting the ex-
pressions for the fields into Eq. (3) and evaluating the
quadrature. The results for TG and RG are different,
owing to the fact that the total intensity I is constant in
TG whereas it is not in RG:

TG: tansQd ­
jQ0j

d coth

√
dGz
I0

!
2 P0

, (6a)

RG: Gz ­
I0 2 J0

jQ0j 2 P0
Q 1

J0jQ0j 2 I0P0

2sjQ0j2 2 P0
2d

3 ln

É
sjQ0j 1 P0dexps4Qd 1 jQ0j 2 P0

2jQ0j

É
,

(6b)

where 2P ­ AsAp 1 sBsBp 1 c.c., d ­ sjQ0j2 1 P0
2d1/2,

and J ­ sAsBp 1 ApBsdexps2ifd 1 c.c. On the solutions
given by Eqs. (4) one must impose cavity oscillation con-
ditions. As in any other cavity, the mode oscillation con-
dition is that the intracavity field reproduces itself after a
round trip. This puts an extra condition on the two field
components that were considered free parameters above.

In TG the intracavity field is the A field, so the oscil-
lation conditions read as

Ap0 ­ r expsicdApd, As0 ­ r expsicdAsd , (7)

where r is the product of the reflectivities of the three
mirrors that constitute the ring and c is the round-trip
propagation phase shift. We assume that jrj can be
larger than 1, so the presence of optical amplifiers in the
ring is allowed. Assuming that the overall reflectivity
produces a phase shift fr, the round-trip phase condition
is given by

c 1 fr ­ 2mp , (8)

where m is an integer. The ring will oscillate, provided
that condition (8) is fulfilled and the intensities jAp0j2

and jAs0j2 are nonzero. There might also be threshold
conditions forced on the other free parameters in the
problem: the pump-field intensity jBj2 and the strength
of the coupling Gd. We discuss these below.

Usually there is also a frequency condition on the oscil-
lating cavity. However, the cavity containing a PR crys-
tal can oscillate at any cavity length, even though the
bandwidth is narrow (provided that the coupling is strong
enough).3 For simplicity we assume degeneracy (no fre-
quency detunings) and a tuned cavity. With the help of
Eqs. (4) and (7) we obtain the amplification coefficient:
k ­
As0

Bp0
exps2ifd ­

Ap0

Bs0
exps2ifd ­

sinsud

cossud 2
1
jrj

.

(9)

Using Eqs. (6a) and (9), we find the following expres-
sion for the grating action:

tansud ­
ksb 2 cd
b 1 k2c

, (10)

where b ­ cothsdGdyI0d 1 1 and c ­ cothsdGdyI0d 2 1.
From Eqs. (9) and (10) it follows that

cossud ­
b 1 cjrj2

jrjsb 1 cd
, (11)

and this expression can be used to find the threshold
conditions on the coupling strength Gd. After a short al-
gebraic manipulation, one obtains the conditions that
are put together in Table 1. We define t ­ byc ­
exps2dGdyI0d ­ expsaGdd as the threshold parameter.
In RG (to be discussed in a moment) the threshold pa-
rameter will be exps2aGdd. Table 1 applies to both TG
and RG. The threshold value of the coupling, Gth, is de-
termined from the condition that t ­ jrj at the threshold.
One obtains

Gthd ­ lnsjrjdya , (12)

where a ­ 2dyI0 ­ sBs0Bp0 1 c.c.dysjBs0j2 1 jBp0 j2d. We
anticipate that the threshold coupling for RG will be ex-
actly the negative of the one for TG, as shown in Figs. 2
and 3.

Table 1. Threshold Conditions

2WM TG, RG

1 , jrj jrj , t

jrj , 1 t , jrj

Fig. 2. Threshold conditions for 2WM rings from Table 1 pre-
sented graphically: NP, not possible. For these values of over-
all reflectivity of the cavity jrj and coupling strength aGd the
ring will not oscillate.
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Fig. 3. Oscillation intensities jAsdj2 and jApdj2 (TG side) and
jBsd j2 and jBpdj2 (RG side) in the 2WM ring as functions of
coupling Gd for two values of the pump intensity ratio. Perfect
symmetry between TG and RG is visible. Here jrj ­ 0.5 and
a ­ 0.

Using these results, one finds convenient expressions
for the oscillating intracavity intensities:

jApdj2 ­
jBs0j2

1 2 jrj2

√
1 2

t2

jrj2

!
, (13a)

jAsdj2 ­
jBp0j2

1 2 jrj2

√
1 2

t2

jrj2

!
. (13b)

These formulas are obtained from Eqs. (7) and (9).
Figure 3 depicts some representative cases. Thus the
intracavity field can be amplified (or changed in other
ways) at the expense of pumps. We use these formulas
below to display transistor action in PR rings.

In the RG the intracavity field is the B field, so the
oscillation condition has the form

Bp0 ­ r expsicdBpd, Bs0 ­ r expsicdBsd . (14)

The equivalent of Eq. (9) is then

k ­ 2
Bp0

Asd
expsifd ­ 2

Bs0

Apd
expsifd , (15a)

where now

k ­
sinhsud

1 2
coshsud

jrj

. (15b)

The grating action u is found from Eq. (6b), evaluated
at z ­ d:
Gd ­
I0 2 J0

jQ0j 2 P0
u 1

J0jQ0j 2 I0P0

2sjQ0j2 2 P0
2d

3 ln

É
sjQ0j 1 P0dexps4ud 1 jQ0j 2 P0

2jQ0j

É
, (16)

where jQ0j, P0, I0, and J0 depend only on u:

jQ0j ­ 2akIA sechsudf1 1 k sinhsudg , (17a)

2P0 ­ aIA sech2sud f1 1 2k sinhsud 1 k2 coshs2udg,
(17b)

I0 ­ IA sech2sud f1 1 2k sinhsud 1 k2 coshs2udg ,

(17c)

J0 ­ 22kIA sechsud f1 1 k sinhsudg , (17d)

where now a ­ sAsdApd 1 c.c.dysjAsdj2 1 jApdj2d and IA ­
jAsdj2 1 jApdj2. The oscillation condition imposes a rela-
tion on the quantities jQ0j, P0, I0, and J0:

I0jQ0j ­ J0P0 , (18)

which together with Eqs. (17) is used to simplify Eq. (16):

aGd ­ ln

É
jQ0jcoshs2ud 1 P0 sinhs2ud

jQ0j

É
. (19)

This brings an expression for the grating action analo-
gous to Eq. (10):

sinhsud ­
ksb 2 cd
b 1 k2c

. (20)

Here b ­ 1 and c ­ expsaGdd, so t ­ exps2aGdd. In
TG, remember that t ­ expsaGdd. Thus the threshold
coupling for RG is the negative of the threshold coupling
for TG. In view of Eq. (15b), it follows that

coshsud ­
jrjsb 1 cd
b 1 cjrj2

. (21)

Because coshsud $ 1, the threshold conditions from
Table 1 for RG are obtained. Likewise, the expressions
for the oscillation fields analogous to Eqs. (13) follow.

One can see that a high degree of symmetry exists be-
tween TG and RG in the 2WM ring with crossed polariza-
tion. We will see that this symmetry is formally carried
over to the 4WM rings. However, at one point it will
be broken. Our results for PR rings are summarized in
Table 2. 4WM rings are discussed in Section 3.
Table 2. Summary of Results

2WM, Cross Polarization 4WM, Parallel Polarization

RG TG RG TG

t ­ exps2aGdd t ­ expsaGdd t ­
I2d 1 I10 expsGdd
I10 1 I2d expsGdd

t ø
I10 1 I2d expsGdd
I2d 1 I10 expsGdd

coshsud ­
jrjst 1 1d
t 1 jrj2

secsud ­
jrjst 1 1d
t 1 jrj2

coshsud ­
jrjst 1 1d
t 1 jrj2

secsud ø
jrjst 1 1d
t 1 jrj2

k ­
jrjsinhsud

jrj 2 coshsud
k ­

jrjsinsud
jrjcoshsud 2 1

k ­
jrjsinhsud

jrj 2 coshsud
k ­

jrjsinsud
jrjcossud 2 1

sinhsud ­
kst 2 1d
t 1 k2 tansud ­

kst 2 1d
t 1 k2 sinhsud ­

kst 2 1d
t 1 k2 tansud ø

kst 2 1d
t 1 k2
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3. FOUR-WAVE MIXING RINGS
The analysis of the 4WM rings proceeds accordingly. We
follow the RG case. The solution of Eqs. (2) is of the form

A1 ­ A10 coshsQd 1 A30 expsifdsinhsQd , (22a)

A3 ­ A30 coshsQd 1 A10 exps2ifdsinhsQd , (22b)

A2 ­ A20 coshsQd 1 A40 exps2ifdsinhsQd , (22c)

A4 ­ A40 coshsQd 1 A20 expsifdsinhsQd . (22d)

Again, the missing end values of fields are given in terms
of the known fields and the grating action:

A30 ­ A3d sechsud 2 A10 exps2ifdtanhsud , (23a)

A20 ­ A2d sechsud 2 A40 exps2ifdtanhsud . (23b)

On inspecting Eqs. (4) and (5) one notes a complete sym-
metry with the 2WM RG case. However, the 4WM ring is
bidirectional. The counterpropagating intracavity fields
are A4 and A3. Hence the oscillation conditions are

A40 ­ r expsicdA4d, A3d ­ r expsicdA30 , (24)

and the amplification coefficient

k ­
A3d

A10
expsifd ­ 2

A40

A2d
exps2ifd (25)

has exactly the same form as in Eq. (15b). Furthermore,
one can show that the quantity

R ­ I 2 2 4jQj2 (26)

is constant. Hence 2jQj ­
p

R sinhs2ud, I ­
p

R
coshs2ud, and the variable u is given by

sinhs2ud ­ sinhs2u0dexpsGzd . (27)

On the other hand, from the expressions for jQj at z ­ 0
and z ­ d one finds that4

sinhsud ­
fexpsGdd 2 1g jA10A3d 1 A2dA40j

expsGdd sI10 1 I40d 1 I2d 1 I3d

, (28)

which in view of Eq. (25) is easily manipulated into the
form given by Eq. (20), with b ­ I2d 1 I10 expsGdd and
c ­ I10 1 I2d expsGdd. Likewise, Eq. (21) follows. In
this manner column 3 of Table 2 is completed. Simi-
larly, one can show that Table 1 is valid for the 4WM
ring, provided that t ­ byc is used as the threshold pa-
rameter. However, for reasons to be discussed in a mo-
ment, Tables 1 and 2 are only approximately correct for
the 4WM TG.

A high degree of symmetry is noted between the 2WM
RG and the 4WM RG. One is tempted to use the ap-
parent hyperbolic–trigonometric symmetry and the in-
verse threshold conditions between the 2WM RG and TG
to complete Table 2 for the 4WM TG case. This is even
more tempting in view of the fact that Gu and Yeh could
not derive the corresponding formulas by using a similar
method. Instead, they had to resort to numerical compu-
tations. However, such a program could be carried out
only up to a point. At a certain place in the procedure
the symmetry between the RG and the TG cases breaks,
and the expressions are only approximately correct (i.e.,
symmetric). In what follows we explore in more detail
this example of symmetry breaking.

The analysis of the 4WM TG ring proceeds along the
same lines as before. We write the solution of the wave
equations:

A1 ­ A10 cossQd 2 A40 expsifdsinsQd , (29a)

A4 ­ A40 cossQd 2 A10 exps2ifdsinsQd , (29b)

A2 ­ A20 cossQd 2 A30 exps2ifdsinsQd , (29c)

A3 ­ A30 cossQd 1 A20 expsifdsinsQd , (29d)

and we find the missing boundary values:

A20 ­ A2d cossud 1 A3d exps2ifdsinsud , (30a)

A30 ­ A3d cossud 2 A2d expsifdsinsud . (30b)

The oscillation conditions read as

A40 ­ r expsicdA4d, A3d ­ r expsicdA30 , (31)

and the amplification coefficient is

k ­ 2
A40

A10
expsifd ­

A3d

A2d
exps2ifd ­

sinsud

cossud 2
1
jrj

.

(32)

Furthermore, in analogy with Eq. (26), one finds that
the quantity

T ­ F 2 1 4jQj2 , (33)

where F ­ I1 2 I3 1 I2 2 I4 is the Poynting power flow,
is constant. T is the quantity corresponding to 4d2 in
the 2WM case. Thus 2jQj ­

p
T sins2ud, F ­

p
T coss2ud,

and Eq. (3) for u is integrated:

tansud ­ tansu0dexp

√ p
T G z
I0

!
. (34)

The symmetry between 2WM and 4WM fails when one
tries to impose oscillation conditions on the boundary
values. That is,4 to determine u one has to solve an
algebraic equation for

p
T and then substitute it into an

appropriate formula for u:

tansud ­
q

p
T coth

√ p
T Gd
2I0

!
2 v

, (35)

where q ­ sA10A40 1 A2dA3ddexps2ifd 1 c.c., v ­ I10 2

I2d 1 I3d 2 I40. This expression is analogous to the cor-
responding expression for 2WM, Eq. (6a). However, on
inclusion of the oscillation conditions one is able to bring
the starting expression for the 2WM grating action,
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tanhsud ­
2ksBs0Bp0 1 c.c.d

2d coth

√
dGd

I0

!
2 sk2 2 1d sBs0Bp0 1 c.c.d

,

(36a)

to the form given by Eq. (10). The corresponding expres-
sion for the 4WM case,

tanhsud ­
2ksI2d 2 I10d

p
T coth

√ p
T Gd
2I0

!
2 sk2 2 1d sI2d 2 I10d

,

(36b)

cannot be transformed into the form given by Eq. (10) be-
cause the boundary values from both faces of the crystal
are mixed in. The term I2d 2 I10 in Eq. (36b) does not
cancel out. Complete symmetry would be restored if in-
stead of A20 and A30 in the expression for

p
T in Eq. (35)

one used A2d and A3d. This is how column 4 of Table 2
is completed. Nevertheless, an approximate symmetry
is maintained, because the forms and the numerical val-
ues of both expressions remain close, as can be seen from
Fig. 4. This is also visible in Fig. 5, where both the sym-
metric and the numerical branches are shown. One can
see that the threshold condition is the same for both
branches.

The threshold value of the coupling Gth is again deter-
mined from the condition t ­ jrj. The result is

expsGthdd ­
p 2 jrj

pjrj 2 1
, (37)

where p is the pump ratio, p ­ I10yI2d. One obtains
the same result either from the symmetric solution in
Table 2 or by making a small u expansion in Eq. (36b).
By symmetry, or by a small u expansion in Eq. (28), the
threshold value for the RG case is found to be 2Gth. An
analysis of Eq. (37) will impose some conditions on the
pump ratio. For the ring to oscillate when G . 0 (i.e.,
u . 0) the ratio will be

p ,
1
jrj

for jrj . 1, p .
1
jrj

for jrj , 1 , (38a)

and when G , 0 it is

p . jrj for jrj . 1, p , jrj for jrj , 1 . (38b)

The same conditions hold for the 4WM RG, provided
G ! 2G.

Another symmetry-breaking instance is the appear-
ance of the multivalued solutions in the 4WM TG
case for small values of the pump ratio [below the
threshold defined by relations. (38)]. This aspect is
missing from the 4WM RG case as well as from the
2WM case. Similar tendencies are noted in the be-
havior of the grating action u as a function of Gd
(Fig. 6). This puts the 4WM TG case apart from the
other cases of 2WM and 4WM rings. One can obtain
the maximum value of the pump ratio for which mul-
tiple solutions still exist from Eq. (37) by putting Gth ­
6`. Thus for G . 0 and jrj , 1 it is pth ­ 1yjrj, and for
G , 0 and jrj . 1 it is pth ­ jrj. This is in agreement
with the numerical findings of Gu and Yeh. For values
of the pump ratio for which multiple solutions exist in TG
there are no solutions in RG. The value of the thresh-
old coupling constant in the multivalued case cannot be
obtained by a small u expansion (because u is not small
anymore). It must be determined by other means.

One can resolve the multivaluedness by performing a
stability analysis. Based on such an analysis, Wang and
Pan7 conclude that the lower branches in Figs. 5 and 6 are
unstable. Based on symmetry and physical arguments
we conclude that the upper branch of the multiple solution
in Fig. 4 and hence the corresponding lower branches in
Figs. 5 and 6 are unstable. The total grating action u
should be an increasing function of the coupling strength
Gd. In the end it should be mentioned that the ring
oscillation in the multivalued case is not the standard
PR oscillation, in which the intracavity field rises from

Fig. 4. Integration constant dyI0 ­
p

Ty2I0 in the 4WM TG case
as a function of the coupling coefficient Gd for three values of the
pump ratio I10yI2d. If the symmetry between TG and RG were
to hold, this constant would be the same for any value of Gd
(depicted by the corresponding horizontal lines). As it can be
seen, the symmetry holds only approximately, and better so for
higher values of the pump ratio. Other parameters are jrj ­ 0.5
and I2d ­ 1.

Fig. 5. Oscillation intensities I3d for the RG case and I40 for
the TG case of the 4WM bidirectional ring. This figure should
be compared with Fig. 3. The dashed curves on the TG side
display the symmetric approximate solution obtained by analogy
with the 2WM ring. A further breakup of symmetry is noted
for small values of the pump ratio I10yI2d : whereas in the RG
there is no solution in the TG one obtains multiple solutions.
The parameters are as in Fig. 4.
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Fig. 6. Grating action u as a function of the coupling constant
Gd for different values of the pump ratio in the 4WM case. The
dashed curves depict the approximate symmetric solution. The
parameters are as in Fig. 4. Again, multistability is noted.

Fig. 7. Threshold value of Gthd as a function of the pump ratio
for different values of jrj. RG is assumed. (Results for TG are
identical to those of Gu and Yeh.)

the noise. Here, in addition to the coupling’s being above
the threshold and the pump beam ratio’s being below the
multiplicity threshold, a finite seeding of the intracavity
field is necessary.

4. SUMMARY
Unidirectional and bidirectional ring resonators with
photorefractive crystals as intracavity optical elements
have been discussed in this paper. Intracavity oscilla-
tion is based on 2WM and 4WM processes in PR crystals,
whereby one beam oscillates and the other acts as a pump
(unidirectional ring) or two beams oscillate and two act
as pumps (bidirectional ring). Analytical expressions for
threshold conditions and oscillation intensities are ob-
tained. Our results are summarized in Tables 1 and 2
and are presented graphically in Figs. 2–8.

Our results are a generalization of the results of Gu
and Yeh, in that we considered both TG and RG and both
(a)

(b)

(c)
Fig. 8. Transistor action of a 2WM TG ring: (a) The ampli-
fication effect. Here b ­ 100.2 for jrj ­ 0.995 and Gd ­ 25.
The parameter a is the phase difference between the pump
components. (b) The saturation effect. (c) Volt–ampere char-
acteristics of an optical transistor. For a ø py2 one notes the
region of negative resistance.
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2WM with crossed polarization and 4WM with parallel
polarization. Our analytical results are consistent with
their numerical findings, except for the case of symmetry
breaking noted in the 4WM TG formulas. An example of
similarity between the 4WM TG and RG cases is depicted
in Fig. 7, which should be compared with the correspond-
ing results of Gu and Yeh.

An interesting field of potential applications for PR
rings is photorefractive circuitry. In analogy with the
processor electronics, one can understand a piece of PR
crystal as a four-pin or an eight-pin optical element (with
two or four beam intensities acting as pins at each side of
the crystal).7 Connecting pins would mean closing opti-
cal paths through resonators with optical propagators of
the form jrjexpsicd. One can construct different PR cir-
cuits by interconnecting the pins of one or more than one
optical processor. This representation is useful when one
is discussing phase-conjugate mirrors with more than
one interaction region.8 Here we display the operation
of an optical transistor. The idea is that a weak pump
beam can be made to control a much stronger intracav-
ity beam through the PR interaction in the crystal. This
is displayed by use of either a 2WM or a 4WM ring in
the RG; however (because of symmetries), one can also
use TG. The controlling (input) beams are A10 and A2d,
and the output beams are A30 and A4 d. If the ring is
assumed to operate in the usual common-emitter tran-
sistor mode, then the role of the collector current is re-
served for I4 d, the role for the base current is reserved
for I2d, and the roles of the controlling voltages VCE (col-
lector–emitter) and VBE (base–emitter) are reserved for
I10 and I30. The current gain b (the ratio of I4dyI2d) is
obtained from Eqs. (24) and (25):

b ­
k2

jrj2
­

1 2
t2

jrj2

1 2 jrj2
. (3)

Hence it is connected with the amplification parameter
k. Likewise for the 2WM ring, the role of the currents
is played by jApdj2 and jBs0j2 and the role of the voltages
is played by jBp0j and jAsdj2. The volt–ampere charac-
teristics of the device are presented in Fig. 8. It is seen
that a remarkable analogy to the operation of an elec-
tronic device exists. This analogy can be carried over to
the dynamical domain as well.8 PR rings can mimic the
operation of other electronic devices, such as the ones
that display negative resistance (thyristors). Because
PR crystals allow for parallel processing, there is the pos-
sibility of building integrated all-optical PR circuits to
be used in optical computers and communications. How-
ever, it remains to be seen whether such circuits can be
built and usefully implemented in a very demanding field.
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