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A unified but simple method for solution of four-wave mixing equations in photorefractive crystals in both
transmission and reflection geometries is presented. The method is applied to the problems of double phase
conjugation and two-wave mixing with crossed polarizations in cubic crystals.

Wave equations describing the mixing of laser beams
in photorefractive crystals thus far have been solved
in a number of ways.!"* However, the solution pro-
cedures for different geometries of the mixing process
differ widely. Even the procedures for the same geom-
etry (transmission or reflection) are unrelated. Further,
the results all turn out to be rather complicated, despite
the simple form of the beginning equations. Finally, the
apparent symmetries of the equations have not been used
to facilitate the solution process.

We try to improve on this situation by offering a simple
universal method that can be used for both geometries
and that uses symmetries, yields simple formulas, and
provides an explicit procedure for fitting boundary con-
ditions. The method represents a synthesis of previous
efforts.®> We apply it to double phase conjugation (DPC)
and to the problem of two-wave mixing with crossed
polarizations in cubic photorefractive crystals, a problem
that has not been solved before to our knowledge.

The geometry of the process is presented in Fig. 1. The
mixing of waves in the crystal produces two predominant
kinds of diffraction gratings: large-spaced transmission
and small-spaced reflection gratings. The grating ampli-
tude for the first kind is given by Qr = A;A4 + AsAs,
while for the second kind it is Q@ = A1A; + AzA,, where
the overbar stands for complex conjugation. Slowly vary-
ing envelope wave equations are of the form

IA) = TQrA,, IA) = -TQrA,, )

IA) =TQpAs, IA; = -TQrA, ©))]
for the transmission geometry (TG) and

IA) =TQrA;, IAy =TQpAi, 3)

IA) =TQRrAy, IA)/ = TQRrA> 4)

for the reflection geometry (RG). Here I = > |A;12 is
the total intensity, I' is the coupling constant (real in
photorefractives), and the prime is the derivative along
the propagation (z) direction. A steady-state, degener-
ate, plane-wave situation is assumed. The object of the
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analysis is to solve these equations as a boundary-value
problem.

A solution procedure usually consists of two parts:
the first part is the method for solving the equations,
the second the procedure for fitting boundary conditions.
Often the second part is more complicated than the first
part. The key to our method is to note, first, that the
phase ¢ of the grating amplitude is constant and, second,
that because of the symmetries of the equations the fields
can be naturally paired and the equations represented
in a matrix form. With this in mind, one introduces a
convenient new independent variable,

_ I'Qmzl
== 5)

(one @ for the TG and one for the RG) and rewrites
Egs. (1)—(4) by using matrices:

Al-w_ —Al
[A4_ - T AJ’
[A3 =T (¢) 4s ] (6)

for the TG, and

0/

Al [ A,
[As = R(#) AJ’

AT A,
I:Az = R(s) AJ’ )

for the RG. The prime now denotes the derivative with
respect to . Matrices 7 and R are of the form

0 expie)
T@)= [—eXP(—id)) 0 }
0 explig) }

8

Rie) = [exp(—itb) 0

In this manner the original nonlinear problem is trans-
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Fig. 1. (a) Geometry of four-wave mixing: (b) TG, (c) RG.
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formed into a linear problem, which is easily solved:

A _ C1 |,
4] —omwo-a] ]

Ag | _ _ Cs
[—Az 1= Mr(d, 0 Hd),: —C, :l’ 9)
Al _ _ A
I:Aa_ = Mg(¢,6 9d)[ C :|’
Al _ Cy
{A2_ = Mg(¢,6 0°)|:A20]’ (10)

where C; are the given boundary values of the four fields
(specified at the z = 0 and z = d faces of the crystal) and
the matrices Mz, Mp are given by

cos(8) exp(i¢)sin(9) }

—exp(—i¢)sin(6) cos(6) 11)

MT(¢, 0) = [

cosh(8)

exp(i ¢)sinh(6)
Mr(¢,0) = l:exp(—i¢)sinh(0) :I B

cosh(9)

Thus the original problem is solved if one determines 6
as a function of z and 6, as a function of boundary values.
We note in passing that this representation reveals an
SU symmetry of the original problem®¢ [SU(2) for the TG
and SU(1, 1) for the RG]. This symmetry is reflected in
the form of the solutions and in the solution procedure.
However, the symmetry will be broken along the way.
In fact, the first methodological difference between the TG
and the RG is already apparent. The pairs of fields in the
TG are naturally connected with the boundary conditions,
while in the RG they are not. Unspecified (missing)
boundary values Agy = Az(z = 0) and A1y = Ai1(z = d)
are mixed in, and the procedures for fitting boundary
conditions will not be symmetric.

A second methodological difference is connected with
the solution of Eq. (5). It is easily verified that the total
intensity I is constant in the TG case:

I=T +T,, (13)

where Ty = I, + I and Ts = I, + I3 are the partial inten-
sities. In the RG the total intensity is not conserved, but
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the total power flow is conserved:
F =R+ Ry, (14)

where Ry = I; — I3, Ry = I, — I, are the partial flows.
Thus the solution of Eq. (5) will be different in the two
geometries. This solution is facilitated by the existence
of two conserved quantities of higher order:

Ty =F?+4Qr°, Ry =1%-4IQzl*. (15)
With the help of these quantities the Vfollowing ekpressions
are obtained for the magnitudes of the grating amplitude:

vE;
2

1@zl = YI5 gin(20),

B Qr| =

sinh(29), (16)
and for the flow and the intensity,

= —/T; cos(26), I = JR; cosh(26). amn

Now Eq. (5) is integrated:

tan(9) = tan(8o)exp[(vT5 /I)Tz],
sinh(26) = sinh(260)exp('z) 5 (18)

and the solution part of the problem is finished. There
remains the boundary-value fitting part.
In the TG, to start with, one finds the expressions for

1Qal + 1Qol and Q4] — |Qol:

q cos(Bg — 6p) + v sin(8g — 6y) = /T sin(fy + 6o), (19)
p sin{fg — 6p) + w cos(8; — Gy) = \/TT,«; cos(fg + 6g), (20)

where g = (C2C5 + 0154)exp(—i¢) + ce., p=(CyCs —
CiChlexp(—ig) + c.c., v = |Cyl?> — |C3]% + |C32 — |C41%,
and w = |C4|? + |C3|% — |Cs]2 — |C112. Together with the
relation

tan(fy) = @ tan(dy), 2n

where o = exp(—+/T3'd/I), a system of three algebraic
equations (for 84, 6y, and T3) is formed. This system is
solved as follows.

With the shorthand notation x = tan(6; — 6), and y =
tan(fg + 6o), and with Eq. (21), two quadratic equations
for ¢t = tan(8,) are obtained:

12 -2t +a =0, 2+ 29t -a=0, (22)

where ¢ = (1 — @)/2x and 5 = (1 + a)/2y. Thus

o

t=¢-—n= ’ 23)
£ &+ (
and the consistency requirement leads to
£-n=q, (24)

which is an implicit equation for T5. This is most easily
seen if one squares and adds Egs. (19) and (20). After
some algebra a quadratic equation for x is obtained, whose
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solution depends only on Tj:

2 s |”
[ c 3
= + - ,
* T3 —a ‘:(Ta - CL) T3 - a:] (25)
where a = p? + v?, b = ¢%2 + w?, and ¢ = pw + qu.

On the other hand, if one divides Eq. (19) by Eq. (20), a
bilinear relation connecting x and y is obtained:

_gtux
px +w

by —v

Thus x, y, and « depend only on T3, and when Eq. (24) is
solved (numerically), the value of T is found for a given
set of boundary conditions. Then Eq. (23) yields a value
for tan(fy). Even though this general procedure looks a
bit complicated, in applications (as will be seen below) it
leads to simple expressions.

The fitting procedure for the RG case proceeds simi-
larly. First Eqgs. (10) are used to evaluate the missing
boundary values from the known ones:

Ag | _ C,
[A20:| - NR(¢:u)[02]’ (27)

where the matrix Nz is given by

sech(u) exp(i¢d)tanh(u)
Nalp,u) = |:—exp(—i¢.)tanh(u) sech(u) ] (28)

and u = 04 — 6 is the so-called grating action. Second,
from the definition and from Egs. (16) two expressions are
found for the magnitude of the grating amplitude |@g| at
z=0:

ICI?
e—1

= sech(u)|q| — tanh(@)(IC1[* + |C4l?), (29)

|Qol = tanh(u)

where |C|? = Y |C;[?, e = exp(I'd), and here || = |C:Cs +
C,C4. This yields an expression for sinh(u):

lgl (e — 1) ,
e(|Cy112 + IC4l?) + |C2[? + |C3|?
Finally, from Egs. (18) and (30), an expression for
tanh(26,) is obtained:

sinh(u) =

(30)

tanh(260) = sinh(2u) (31)

— cosh(2u) '

A few remarks are in order. From the expressions de-
rived here it is easy to write expressions of experimental
interest, for example, the reflectivity p = Aso/Ca4:

pr = cos(u) & + exp(i¢)sin(u) & ’ (82)
C, Cy

pr = sech(u) & — exp(—i¢)tanh(u) —91 . (83)
C4 C4

Note that the phase of the grating ¢ is also fixed by the
boundary conditions:

¢r = arg(C,C4 + C1Cy), ¢r = arg(C:1Cs + C1Cy).

(34)
However, one can always pick one phase arbitrarily, so
that ¢ can be set to zero.
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The method can be applied to other wave-mixing
processes, for example, to DPC. The geometry of DPC
is transmissionlike, with special boundary conditions:
C;,=0,C3=0. The process is driven by two incoherent
input beams C; and C., and two conjugated beams A; and
Ajs are generated in the crystal—hence the name. DPC
cannot be realized with reflectionlike gratings. Using
Egs. (9), one immediately writes the solution of DPC:

A1 = C4 sin(0 - 00),
Ay = Cy4 cos(6 — 6o),

A; =Cy sin(0q — 0), (35)
Ay =Cqy cos(fg — 6), (36)
where, according to Egs. (18),

tan(g) = tan(fy)exp(al'z). @37

The parameter a = /T3/I = (1 — a)/(1 + a) (not to be
confused with the a defined previously), which is needed
in the specification of both # and 6y, is evaluated from
Eq. (24):

l—a.
1+a

a = exp(—al'd) = (38)

This expression is equivalent to the familiar result! a =

tanh(al'd/2). The angles 6y and 6, are determined from
Eqgs. (23) and (21):

rd % 12
tan(00)=exp(—aT)(Z+g*) ’

a2
tan(8q) = exp(%) (Z T Z*) ) (39)

|
where g* = (IC4[2 — |C21?)/(IC4l? + |IC3[?) is the reduced
input-beam ratio. The reflectivities on both faces of the
crystal are given by

po = g—i sin(u), pd = g—: sin(w), (40)
and everything is known.

As a second example, we apply the method to the
problem of two-wave mixing with crossed polarizations.
Yeh’ considered an interesting fast mixing process in
cubic crystals with point symmetry 43m (such as GaAs).
Equations describing this process are of the form

IA, = -TQrB,, IB,’=TQrA,, (41)

IB, =TQrA,, IA,' = -TQrB, (42)
for the TG and

IA,' = TQgB,, IB,' = TQRA;, (43)

IB/ =TQgA,,  IA)/=TQrB; (44)

for the RG. A, A, and B, B, are the orthogonally po-
larized components of the two beams incident upon the
crystal, and Qi = A.B, + A,B, is the grating ampli-
tude. Yeh succeeded in solving the TG case, using a
four-wave mixing method developed by Cronin-Golomb
et al.l; however, the RG case could not be solved. Simi-
lar equations were derived by Fisher et al.® They also
succeeded in solving only the TG case. We show how
to obtain a complete analytical solution by the method
outlined above.
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Fig. 2. Geometry of two-wave mixing with crossed polarizations
in RG. The angle 6 (not to be confused with 6 in the text) is
assumed to be small.
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Fig. 3. Two-wave mixing with crossed polarizations in RG. A
case with strong coupling and total depletion (and recovery) of
one of the beams is depicted. The parameters are u = 2.4554486,
04 = 1.444779, 89 = —1.010667, and the boundar2y conditions are
[Asq? = 0.75, |Apgl? = 0.25, |Bsol2 = 0.5, |Byol? = 0 (arbitrary
units).

We are concerned only with the nontrivial case of
RG. The geometry of the process is presented in Fig. 2.
Equations (43) and (44) are written in the form given by
Egs. (7) if the following identification of the fields is made:
Ag = Ay, Ay~ Ay, B, = Ay, B, — A;. The solution is
then given by the matrix Mp from Egs. (10). However,
the determination of the angles 6 and 6y proceeds along
different lines, owing to the different form of @ and the
different boundary conditions.

The conditions are that the B fields strike the z = 0
face of the crystal and the A fields the 2 = d face. The
grating amplitude @ is found to be

Q| = |Qolcosh(2@) + P sinh(20), (45)

where ® = 8 — 6, and |Q,] and P depend only on the
grating action u = 63 — 6. Similarly, the total intensity
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I is given by
I = Iy(w)cosh(20) + J(u)sinh(20). (46)

The determination of |Qyl, P, Iy, and J as functions of
u is a simple algebraic problem. Now the equivalent of
Eq. (5) is solved:

_ DHlQl -JP = LP - JIQol
T2©) =g =P © ~ (g7 - P7)
sch(20 + ¢)
X ln[Th({)—jI ’ 47

where the function sch(x) is defined as

sinh(x) |Qol <P

cosh(x) (@0 > P (48)

sch(x) = {

and tanh({) = min(|Ql, p)/max(|Qq, P).

The fitting of the boundary conditions in this case is
simple: One need only determine u. This is done by
evaluating Eq. (47) at z = d. The value of 6y is found
from the analog of relations (16) and (17):

IR — Ryl + %[r sech(u) — Ipp tanh(u)] = @ sinh(26),
(49)

I = /R cosh(26), (50)

where R = Ast + APE.S,_*I' = (Asd_E-po + ApdEsO)
exp(—i¢) + cc., ¢ = arg(AaBso + ApaByo), and I =
2Ipo. At z = 0, relations (49) and (50) yield

r— IBB sinh(u)

tanh(26o) = 7 a5 sech () — r tanh(z)

(61)

where Isp = I44 + cosh(2u)Ipy. This completes the solu-
tion. We have compared our analytical solution with the
numerical solution® and have found perfect agreement.
An example of the cross-polarization two-wave mixing
process is depicted in Fig. 3.

In summary, we have presented a unified method
for solution of wave-mixing equations in photorefractive
media. We have shown how the method works by solving
in parallel the four-wave mixing problem in both the TG
and the RG. We have then applied the method to the
problems of DPC and to two-wave mixing with crossed
polarizations in RG, which until now have not been solved.
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