J. Nonlinear Optic. Phys. Mat. 2015.24. Downloaded from www.worldscientific.com
by DUKE UNIVERSITY on 08/09/15. For personal use only.

World Scientific

Vol. 24, No. 2 (2015) 1550017 (41 pages) aww worldscientilio.com

© World Scientific Publishing Company
DOI: 10.1142/S0218863515500174

Journal of Nonlinear Optical Physics & Materials \\
N

Optical solitons in nonlinear directional
couplers with G’/G-expansion scheme

Mohammad Mirzazadeh*, Mostafa Eslamif, Qin Zhout,
M. F. Mahmood$, Essaid Zerrad¥, Anjan Biswas/-** and Milivoj Belic't

*Department of Mathematics, Faculty of Mathematical Sciences,
University of Guilan, Rasht, Iran

tDepartment of Mathematics, Faculty of Mathematical Sciences,
University of Mazandaran, Babolsar, Iran

1School of Electronics and Information Engineering,
Wuhan Donghu University, Wuhan 430212, People’s Republic of China

8Department of Mathematics, Howard University,
Washington, DC 20059, USA

IDepartment of Physics and Engineering,
Delaware State University, Dover, Delaware 19901-2277, USA

IDepartment of Mathematical Sciences,
Delaware State University, Dover, Delaware 19901-2277, USA

**Department of Mathematics, Faculty of Science,
King Abdulaziz University, Jeddah 21589, Saudi Arabia

tiScience Program, Texzas A and M University at Qatar,
P. O. Box 2387/, Doha, Qatar

**biswas. anjan@Qgmail.com

Received 4 March 2015

This paper obtains soliton solutions in optical couplers. The governing equation is solved
by the aid of G’/G-expansion scheme. There are four types of nonlinear media that
are taken into consideration. These are Kerr law, power law, parabolic law, and dual-
power law. There are two kinds optical couplers studied in this paper. They are twin-
core couplers and multiple-core couplers, where coupling with nearest neighbors as well
as coupling with all neighbors are considered. Dark and singular soliton solutions are
retrieved. These soliton solutions come with constraint conditions that must hold for the
solitons to exist.
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1. Introduction

Optical solitons is the basic fabric of fiber-optic communications across trans-
continental and trans-oceanic distances. These soliton molecules are studied in sev-
eral different context in this field.' =40 They are optical fibers, optical couplers, opti-
cal switching, and several others. This paper will focus on obtaining soliton solutions
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in optical couplers. The governing equation will be the nonlinear Schrédinger’s equa-
tion (NLSE). This paper will consider NLSE with spatio-temporal dispersion (STD)
in addition to the usual group velocity dispersion (GVD). The inclusion of STD
makes the governing equation well-posed as pointed out during 2012.'3:2! There are
dark and singular solitons that will be retrieved from the model. The four forms
of nonlinear media that will be studied in this paper are Kerr law, power law,
parabolic law and dual-power law. The case of log-law nonlinearity with Gaussons
was reported in the past.®3® Several constraint conditions will be revealed that will
guarantee the existence of these soliton solutions.

There are several integrability issues that exist in the literature of partial dif-
ferential equations (PDESs). Several papers have been reported on optical couplers
where bright, dark and singular soliton solutions are reported.!'=838 This paper
adopts a different integrability criteria. This is G'/G-expansion scheme. The limi-
tation of this approach of integration is that this scheme only retrieves dark and
singular solitons only. The bright soliton solutions cannot be recovered with this
algorithm. However, such soliton solutions are retrievable using other scheme such
as ansatz method that was already reported during 2014.3% The following section
gives a mathematical overview of G’/ G-expansion scheme. Subsequently, this will be
implemented to recover soliton solutions. There are two types of couplers that will
be studied in this paper. They are twin-core couplers and multiple-core couplers.

2. Recapitulation of G’/G-Expansion Scheme
We suppose that the given nonlinear evolution equation for u(z,t) is in the form
P(u7ut7uw7uajajauwtautta‘") :07 (1)

where P is a polynomial. The essence of the G'/G-expansion method can be pre-
sented in the following steps?h2:

Step 1: To find the traveling wave solutions of Eq. (1), we introduce the wave
variable

u(z,t) =U(r), 7= B(z—t). (2)

Substituting Eq. (2) into Eq. (1), we obtain the following ordinary differential equa-
tion (ODE)

QU U\ U",...)=0. (3)

Step 2: Equation (3) is then integrated as long as all terms contain derivatives
where integration constants are considered zeros.

Step 3: Introduce the solution U(7) of Eq. (3) in the finite series form
N 1

G'(7)

U(r) = A , 4

M=3 (23) (@)

where A; are real constants with Ay # 0 and N is a positive integer to be deter-
mined. The function G(7) is the solution of the auxiliary linear ordinary differential
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equation (LODE)
G" (1) + \G' (1) + pG(1) = 0, (5)
where A\ and p are real constants to be determined.

Step 4: Determining N can be accomplished by balancing the linear term of highest
order derivatives with the highest order nonlinear term in Eq. (3).

Step 5: Substituting the general solution of (5) together with (4) into Eq. (3)
yields an algebraic equation involving powers of G'/G. Equating the coefficients
of each power of G'/G to zero gives a system of algebraic equations for A;, A, p
and c¢. Then, we solve the system with the aid of a computer algebra system,
such as Maple, to determine these constants. Next, depending on the sign of the
discriminant A = \? — 4, we get solutions of Eq. (3). So, we can obtain exact
solutions of Eq. (1).

3. Twin-Core Couplers

The governing equation for twin-core couplers is given by!—638
Z.qt + a1qza + b1ta + ClF(|q|2)q = kln (6)
it + a2Tgs + barar + 2 F(|r[*)r = kag. (7)

Equations (6) and (7) represent the coupled NLSE, with GVD and STD, that
governs soliton propagation through twin-core optical fibers, typically for non-Kerr
law media. The first term, for both equations, represents the evolution term. The
coefficients of GVD are a;, while the coefficients of STD are b; for [ = 1,2. Then ¢
represents the coefficients of nonlinearity where the functional F' gives the type of
nonlinearity that will be studied. Here, F(|q|?)q : C — C. Considering the complex
plane C as a two-dimensional linear space Ry, the function F(|g|?)q is k times
continuously differentiable, so that

F(lg*ae |J C*((=n,n) x (~=m,m); R?). (8)

On the right-hand sides of (6) and (7), constants k1 and ks represent the coupling
coefficients. In order to study integrability of these equations by G’/G-expansion
scheme, the following solution structure is selected.

g(w,t) = Pr(z,1)e0), (9)
’I“(JZ, t) =P (J), t)ei¢($,t)7 (10)

where Pj(x,t) (I = 1,2) represents the amplitude component of the soliton solution
while the phase component ¢(z,t) is defined as

oz, t) = —kx + wt + 6. (11)

Here & is the frequency of the solitons while w represents the wave number and 6 is
the phase constant. From Eq. (11), it is clear that the phase for both the couplers
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are same and this is referred to as “phase-matching” condition. This condition is
necessary for integrability purpose. Without this condition, the integrability aspect
fails.

Substituting (9) and (10) into (6) and (7) and then decomposing into real and
imaginary parts gives

9*P, %P,
“ay T bi pe iy P(bwk —w — aik?) + e F(PP)P — ki Pr =0 (12)
and
op, opP,
(1- blﬁ)ﬁ + (hw — 2@[&)% =0, (13)

respectively. Here, [ = 1,2 and [ = 3 — [. Under the travelling wave transformation

Pi(x,t) =Ui(1), Polx,t) =Us(r), 7= B(x—0t) (14)
we have
YL %)+ e F(UR)U, — kiU = 0 15
(al—lv) dT2+ l(lwm—w—am)—f—cl (l)l_ Uy = ( )
and
dU,
(—v(1 = byk) + bw — 2am)Bd—7_l =0. (16)
Now, from Eq. (16), we get
biw — 2a;k
= 17
1—-bk ( )
Now, equating the two values of the soliton speed leads to
a1 = ag (18)
and
by = bo. (19)
The speed of the soliton therefore reduces to
bw — 2ak
B ——— 20
v 1—-0k (20)
The coupled NLSE for twin-core couplers given by (6) and (7) modifies to
iqt + Qo + bt + 1 F(|q*)q = Ky, (21)
ire 4+ arpy + bres + coF(|r|?)r = kog, (22)
where a1 = as = a and b; = by = b. Consequently, Eq. (15) changes to
YL 2+ qF(UR)U — kiU; =0 23
(a —bv) d7'2+ 1(bwk —w — ak™) + a F(U;)U; — kU = 0. (23)
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3.1. Kerr law nonlinearity

For Kerr law nonlinearity, F'(s) = s. The model equations (21) and (22), for twin-
core couplers with Kerr law nonlinearity, reduces to

iqs + aquy + bqur + c1]q’q = kar, (24)
iry + arey + bray + ca|r*r = kaq. (25)
Therefore, real part equation (23) is

d*U;

(a — bv) B> = + Ui (bwk — w — ar?) + U} — kUs = 0, (26)
T
d2
(a — bv)B? dgz + Us(bwk — w — ak?) + caUs — keUy = 0. (27)

According to the homogeneous balance method, Egs. (26) and (27) have the solu-
tions in the form

Uy(7) = Ao + A (cg((:) ) (28)
Us(1) = By + By ( g((:; ) (29)

where G(7) satisfies the second-order LODE
G"(1) + AG'(7) + pG(7) =0, (30)

where A\ and p are real constants to be determined.
Substituting Eqgs. (28) and (29) into Eqgs. (26) and (27) leads to

) el 3 el 2 ) el
(a — bU)B 2A1 5 + 3A1)\ 6 + (2141# + Al)\ ) 5 + /\UAl

- (bwk — w — ak?) {Ao +A1<%)} +01{A0 +A1<%) }3

Afon(@)) -«
(a- bv)B2{2Bl (%)3 ¥ 3B1)\<%)2 + e 502 (5) + AuBl}

- (bwk — w — ak?) {Bo +B1<%/)} +C2{BO +Bl<%/>}3

fuea(E))
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Then, equating the coefficient of each power of G’/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

Ay =12 2, A ==+,/28, (33)
2\ C1

A c2B? +2B%a kicy
Bo 5 Bl, v 2052 ) 2 Cs ) (3 )
B2c2(4u — N\?) + dak®cy + 4k /cica
deo(br — 1)

where B, By Kk, A, i are arbitrary constants.
Equating the two expressions for the soliton speed v from (20) and (34) implies

B (1 —brK)co
B= i\/2( By, (36)

b2w — akb — a)

which immediately prompts the constraint
(1 — bk)ca(b?w — akb — a) > 0. (37)

Finally, equating the two components of the soliton width B gives the ratio of the
soliton amplitudes as

Al C2
—=,/—, [=0,1 38
Bl cl ) ) ) ( )
which immediately prompts the constraint
cico > 0. (39)

Substituting the solution set (33)—(35) into Egs. (28) and (29), the solution formulae
of Egs. (26) and (27) can be written as

Uy (r) = i\/gBl{% + g((;) } (40)
Us(r) = Bl{% + g((:; } (41)

Substituting the general solutions of second-order linear ODE into Egs. (40) and
(41) gives three types of traveling wave solutions.
When A = A2 — 4y > 0, the hyperbolic function traveling wave solutions are:

q(z,t) =+ %;MBl
4 sinh(@B(x - vt)) +Cy cosh(@B(x - vt))
X c, co%(@B(w — vt)) + Cy Sinh(@B(% — vt))
x el —ratwtto) (42)
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24
r(z,t) = A 1 "B,

Ch Sinh<7“\224“B(x — vt)) +Cy cosh( Y )‘274“B(9c — vt))

2

a cosh(‘/mB(x - m) 1Oy sinh(mB(x - vt))

2 2

~ ei(—nr+wt+9)’ (43)

where C7 and Cs are arbitrary constants and B is given by Eq. (36), while v is
given by Eq. (20), and w is given by Eq. (35). There are three constraint conditions
in order for these analytical solutions to exist, they are given by Eqs. (37) and (39)
and ko = (ky1c1)/ca, respectively.

On the other hand, assuming C7 # 0 and Co = 0, dark 1-soliton solutions of
Eqgs. (24) and (25) can be written as:

c2(A* —4p)
461

x4 1 |
r(z,t) = TuBl tanh [%B(x - vt)] i —ratwitto) (45)

Next, assuming C; = 0 and Cy # 0, then we obtain singular 1-soliton solution for
Egs. (24) and (25) as

A2 —4 )
q(x,t) =+ By tanh [%B({E _ ’Ut)] ez(*nerthrG), (44)

A —4 N2 —4 ‘
q(x, t) =4 02(4761)B1 coth [%B({L‘ _ ’Ut)] el(fmc+wt+0)7 (46)
A2 —4 N2 —4 ,
r(z,t) = TMB1 coth l%B(x — vt)] ei(_"”:“""t"'e)7 (47)

where B is given by Eq. (36), while v is given by Eq. (20), and w is given by Eq. (35).
There are three constraint conditions in order for these analytical solutions to exist,
they are given by Egs. (37) and (39) and ks = (k1c¢1)/c2, respectively.

However, when A = A2 — 4 < 0, we obtain trig function traveling wave
solutions:
c2(dp — N)
,t) =+ ———B
q(w,1t) 1o 1

2 2

a cos(mB(x - m) 1Oy Siﬂ(mB(x - vt))

—o sin(mB(x _ m) TG cos(mB(x - vt))

X

2 2
x el(—rtwt+0) (48)
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[Ad — N2
7‘(1‘,7‘))2 M4A Bl

e Siﬂ(mB(x - vt)) L Oy cos(mB(x - vt))

2 2

a cos(mB(x - m) 1Oy Siﬂ(mB(x - vt))

2 2
> ei(—mm—‘—ut—‘—@)’ (49)

where C'; and Cs are arbitrary constants.
Also, with the assumption C; # 0 and Cy = 0, gives

co(dp — MN?2)
401

[dp — N2
r(z,t) = — MTB1 tan

while the assumption C; = 0, Cs # 0 one recovers

dp — N2 VA — A2 »
(w,0) = 4, 2H =N g | VAN g | eitrarette) (59
401 2
dp — N2
r(z,t) =1/ LBl cot
4
where B is given by Eq. (36), while v is given by Eq. (20), and w is given by Eq. (35).
These solutions given by (50)—(53) are commonly referred to singular-periodic solu-
tions. There are three constraint conditions in order for these analytical solutions

to exist. They are given by Eqs. (37) and (39) and ks = (k1c¢1)/c2, respectively.
When A = \? — 4y = 0, the plane wave solutions are:

[ca B,Cy i
t)=4+,/2= i(—kxtwt+0) 4
q(z,1) c1 C1 + CyB(z — vt) ¢ (54)

4 — N2

q(z,t) =F B tanl B(x — vt)] el(mratwtt0) o (50)

/ — )2 .
4%)\3(1‘ _ ”Ut)‘| el(—ﬁaﬁ—‘—ut—o—e)’ (51)

VA — N2 :
%B((E _ ’Ut)] ez(fnm+wt+9), (53)

and

_ B, i(—kxtwt+0)
e e G T rr ’ (55)

where C7 and Cs are arbitrary constants and B is given by Eq. (36), while v is
given by Eq. (20), and w is given by Eq. (35). There are three constraint conditions
in order for these analytical solutions to exist, they are given by Egs. (37) and (39)
and ko = (ky1c1)/co, respectively.
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3.2. Power law nonlinearity

For power law nonlinear media, F'(s) = s" where n represents the power law non-

linearity factor. Thus for twin-core couplers, the NLSE!~6:38
Z'qt + aqzz + bQQ:t + C|Q|2nq = kl’l", (56)
ire + argpy + bryge + cz\r\%r = kaog. (57)

It must be noted that 0 < n < 2 for stability of solitons. Additionally n # 2 for
self-focusing singularity. Therefore, real part Eq. (23) is

2
(a — bv) B> dd U; + Uy (bwk — w — ak?) + U — k Uy = 0, (58)
T
d2
(a — bv)B? de22 + Us(bwk — w — ar?) + U™ — ko = 0. (59)

Based on previous steps, using the balancing procedure between U;” and Ul2"+1 in
Egs. (58) and (59), we get

N+2=02n+1)Ne2mN =2& N =

S|

L L
To obtain an analytic solution, we use the transformation U; = V*" = V" = U,
in Egs. (58) and (59) to find

(a — bv)B2{(1 — 2n)(V])? + 20 Vi V"} + 4(bwk — w — ak®)n* V2
+4c1n?VP — 4kn?VE =0, (60)

(a — bv)B2{(1 — 2n)(V5)? + 2nVaVy)'} + 4(bwk — w — ak?®)n*Vy
+4con?Vy — 4kon®VyE = 0. (61)

Balancing the order of V;V}” and V;* in Egs. (60) and (61), we have N = 2. Therefore,
Egs. (60) and (61) have the solutions in the form

Vi(r) = Ao + A (%) + Ay (%)2 : (62)

Vo(T) = Bo + By (%/) + By (%/)2 (63)

Substituting Eqs. (62) and (63) along with Eq. (30) in Eqgs. (60) and (61) and
setting all the coefficients of exponents G’/G to be zero, then we obtain a system
of nonlinear algebraic equations and by solving it, we obtain

L B2(bv — a)(A\? — 4p) + 4n?(ar? + kq)

4n?(bk — 1) ’ (64)
Ay = _,uB2(a ;f:)(l + n)’ (65)
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_)\Bz(a —bw)(1+mn)

A p—
! n2cy ’ (66)
B?(a—b)(1+n
4y = Bl Idrn) (67
n=cy
B?*(a—bv)(1+n
BOZ_.U ( 2)( ), (68)
n<cy
B2%(a — 1
Blz—)\ (a 2bv)( —|—n), (69)
n<cy
B%(a—b)(1+n
By Blam)en) -
n-<cy
ko = k1, c1=ca, (71)

where B, k, A, p are arbitrary constants.
Now, from Egs. (20) and (64), we have

~ BZ%a(bk + 1)(A? — 4p) 4 (bs — 1)(4n2ar? + 4n’k) (72)
Y An2(br — 1)2 + (A2 — 4p) B2D? '

Substituting the solution set (64)—(71) into Egs. (62) and (63), the solution formulas
of Egs. (60) and (61) can be written as

- B —nz;z)lu +n) <u+/\<%) N (%>2> (73)
i) - B _nl;i)l(l +n) (MJFA(%’) N <%>2> (74)

Using the transformation U; = V,**, we can obtain the following solutions of

Eqs. (58) and (59):
ot (, (@) (OVYL

B —n%;z;)l(l +n) <u+A<%> N (%’)2” - , (76)

Substituting the general solutions of second-order linear ODE into (75) and (76)
gives three types of traveling wave solutions.

Ul(T) =

UQ(T) =

1550017-10
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When A = A2 — 4u > 0, we obtain the hyperbolic function traveling wave
solutions

q(z,t)

B%(a — bv)(A2 — 4p)(1 +n)

4nZcy
VAZ —4 A2 — 4 N
Ch sinh(%B(w — vt)> + C3 cosh (%B(m — vt))
x| 1— > =
(' cosh <%B(w — vt)> + Casinh (%B(m — vt))
« ei(fmv+wt+0) (77)
r(x,t)
B2(a —bv)(A2 — 4p)(1 +n)
N AnZcy
AZ —4 A2 —4 K
(1 sinh (%B(w — vt)> + C5 cosh (%B(m — vt))
x |1— 5 5
(' cosh (%B(w — vt)> + Casinh (%B(m — vt))
« ei(—KfE+wt+9) (78)

where C} and Cy are arbitrary constants and w is given by Eq. (72), while v is given
by Eq. (20), and kQ = /451.

As a special case, assuming C7 # 0 and Cy = 0 the traveling wave solution of
Egs. (56) and (57) leads to dark solitons

qlx,t) = -Bz(a —bo)(\ —4p)(1+n) tanhQ{@B(x - vt)}- ’

4n2ecy 2
% ei(fnm+wt+9)7 (79)
_ oL
B%(a — 2 _4p)(1 VA2 -4 o
r(z,t) = (a = bv)(A w1 +n) tanh? VAR~ 'uB(x —ot)
4n2cy 2
% ei(—mc—i—wt—i—B)’ (80)

1550017-11
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and assuming C7 = 0 and Cy # 0, gives singular solitons:

1
B%a—bo) (A2 —4p)(1+n) o) /A2 —4u B
q(z,t) = |— i, coth fB(x — vt)
x ei(—na+wtto) (81)
1
B?(a —bv)(\% — 4u)(1 +n) 9 A2 —4p "
= |- 1P A AN TP
r(z,t) e cot 5 (x —vt)
x ei(—ratwtto) (82)

where w is given by Eq. (72), while v is given by Eq. (20). These are dark and
singular soliton solutions.

When A = A2 — 4 < 0, we obtain the trigonometric function traveling wave
solution

q(z,t)

B%(a — bv)(A% — 4p)(1 +n)
4n2cy

1
2\ 120
— )2 —\2
-1 sin(%B(w —vt)> + Cy cos(%B(m—vt))

x| 1+
T3 — 2
C'1 cos (4+7/\23(x — vt)) + Cgsin (%B(m — vt))
« ei(fmv+wt+0)’ (83)
r(z,1)

B%(a — bv)(A2 — 4p)(1 +n)

4nZcy
2\ 17"
[41, — \2 V) "
-Ch sin(lmf)\B(;c —vt)> + Co cos(%B(x—vt))
x| 1+ > >
Cq cos(%B(x—vt)) + Ca sin(%B(w—vt))
« ei(fmv+wt+0) (84)

where C and Cy are arbitrary constants and w is given by Eq. (72), while v is given
by Eq. (20).

1550017-12
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Again assuming C7 # 0 and Cy = 0,

1
B%(a — bv)(A\? — 4p)(1 NZTEY o
q(z,t) = (a = bu)( 5 m(1+n) tan? 'uiB(x — ot)
4n‘cy 2
> ei(—mm—o—ut—o—e), (85)
1
2(, — 2 _ [h1, — N2 o
r(z,t) = Bla = bo)(\” = 4p){1 + 1) tan? MiB(x — ot)
4n2ecy 2
% ei(fmc+wt+0), (86)
and on the other hand, C; =0, C3 # 0 leads to
1
B%(a — bv)(A\? — 4p)(1 NZTEY
q(z,t) = (a = bu)( 5 w1 +n) cot? “73(33 —vt)
4n“cq 2
~ ei(—mc—i—wt—i—B)’ (87)
1
B%a—bv)(A\2 —4p)(14+n) o) /4u— A2
r(z,t) = e cot ?B(x —vt)
~ ei(fnerthrG)’ (88)

where w is given by Eq. (72) and v is given by Eq. (20), which are singular periodic

solutions.
When A = A2 — 4y = 0, the plane wave solution is:
1
B(a — bv)(1 +n) Cs i R
— . 1 RTTW 89
ale, 1) n2cy C1 + CyB(x — vt) ‘ , (89)
1
B(a — bv)(1 +n) Cs i R
— . 1 RTTW 90
ri@,t) n2cy C1 + CyB(x — vt) ‘ - (90)

where w is given by Eq. (72), with v in (20).

3.3. Parabolic law nonlinearity

For parabolic law nonlinear media, the governing NLSE is given by! 638
i + AGoa + o + (Galal” + mlal*)g = kur, (91)
iry 4 ares + breg + (E2)r]2 + n2|r|H)r = kaq. (92)

The parameters & and 7; for | = 1,2 represent the coefficients of cubic and quintic
nonlinear terms for the two components. In this case, real part equation (23) reduces
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to

d*U,

(a — bv) B> 7 + Uy (bwk — w — ak®) + & U} +mU; — kUs = 0, (93)

T2

d2
(a — bv)B? dff + Usg(bwk — w — ak?) + &US +noUs — koUy = 0. (94)

Balancing U;” with U} in Egs. (93) and (94) we have

1
N+2:5N<:>2:4N<:>N:§.

We then assume that Eqgs. (93) and (94) have the following formal solutions:

[N

Ui(r) = A1 (%l) . AL #0, (95)

S

Us(T) = Ag <%l) . Ay #0, (96)

where A; and Ay are constants to be determined later and G satisfies Eq. (30).
Thus, we obtain

5 3 1
B2 24, () N (L Lax) (&)
(CL bU)B {4A1 a —|—A1/\ a + 2A1M+4A1)\ a

1 N 3
+A1<%) (bwm—w—aﬁ2)+§1{A1<%) }
ani)’ a3
+771{A1<6) } —k1A2<5) =0, (97)

5 3 1
B2 2a,(E) N (L L) (€)Y
(CL bU)B {4A2 a —|—A2/\ a + 2A2M+4A2)\ a

1 N 3
—|—A2<%) (bwn—w—a/ﬁz)—i-fg{AQ(%) }
) a2
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Then, equating the coefficients of the exponents of G’/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

3 5 +ko/E16s + ar?é

_ 3 99
YETme—1)  ar—1 (99)
_ 3B%a&} +4mE3 A3
V= 35%3% , (100)
B &2
Ay = £, [2A4,, (101)
&1
by = koL (102)
13
pu=0, (103)
2
N2 = %7]1, (104)
1
3¢3
SRS 105
45277114% ( )

where B, k, Ay are arbitrary constants.
Equating the two expressions for the soliton speed v from (20) and (100) implies

B = :|:2§2A%\/ 771(1 - b'%) (106)

& 3(b2w — abk — a)’
which immediately prompts the constraint

m (b*w — abk — a)(1 — bk) > 0. (107)

Ay &2
.- "

which immediately prompts the constraint

§w1&2 > 0. (109)

Now, from Eq. (101), we have

By Eq. (104), we get

&m — &z = 0. (110)

Thus, we obtain the exact traveling wave solution of Egs. (91) and (92) as

q(z,t) = {—:ﬁ 1+ tanh{%\/m(bi(zl—_al;)?— ) (x — vt)}] }

m
X ei(fliIertJrG), (111)

1550017-15



J. Nonlinear Optic. Phys. Mat. 2015.24. Downloaded from www.worldscientific.com
by DUKE UNIVERSITY on 08/09/15. For personal use only

M. Mirzazadeh et al.

s £ 3(1 — br) :
r(z,t) = {_852771 1+ tanh{Z\/m(wa B — (x — vt)}] }

~ ei(—nr+wt+9)’ (112)

which are dark soliton solutions and

q(z,t) = {—:ﬁ 1+ COth{%\/nl(bchl—_al;?— ) (x — vt)}] }

Uit
% ei(*lia:+wt+9), (113)
3¢2 3 3(1 — bk) :
t) =< — 1 + coth{ = — vt
r(z,?) { 8&m: 0 { 4\ n1 (2w — abk — a) (@ = vt)
« ei(fnm+wt+9), (114)

which are singular soliton solutions. Here, v is given by Eq. (20), and w is given by
Eq. (99). There are five constraint conditions in order for these analytical solutions
to exist, they are given by Egs. (107)—(110) and ko = (k1&1)/&2, respectively.

3.4. Dual-power law nonlinearity

For dual-power law nonlinearity, the governing coupled NLSE is!—6:38
iqt + aqzax + bQIt + (fl‘q|2n + 771|Q\4n)q = k17n7 (115)
ire 4 argy + 0o + (E2]r|?™ + na|r[*™)r = kog. (116)

The special case, for n = 1, is parabolic law nonlinearity, discussed in the previous
sub-section. In this case, real part equation (23) reduces to

42U

(a — bw)B> ==L 4 Uy (bwk — w — ar?) + U 4 U — U, =0, (117)
dr? 1 1
d2U.

(a — bv) B> de + U (bwk — w — ar?) + LU + Uyt — ko = 0. (118)

Balancing U}’ with U™ " in Eqs. (117) and (118) we have

1
N+2=(n+ )N &2=4nN & N =
n

We then assume that Eqgs. (117) and (118) have the following formal solutions:

Ul(T) =A1 <%,>ﬂ, A1 #O, (119)
UQ(T) = A2 <%,> & y A2 7é O, (120)
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where A; and Ay are constants to be determined later and G satisfies Eq. (30).
Thus, we obtain

11 aNTt 11 A
J— 2 —_ —_ —_ —_ —_ —_
(a=bv)B {<4n2 * 2n> A1<G> + <2n2 * 2n> AlA(G)

1

G’ 1 1 G\t
—_ 2 —_— e —_—
+<2 Alu—i- A1/\)<G) +<2n2 Qn)Alu)\(G)
11 G\ 7
* (m - %) A (E) }
G/ ﬁ G/ ﬁ 2n+1
+ Ay (E) (bwﬁ—w—a52)+§1{A1 (E) }
o 4n+1 o
(@) na(2) o )
L (L Y (C)TT (L ) (G
(a=bv)B {<4n2 * 2n Az G + 2n? * 2n Az G
el 11 G\ F
2 —_— e —_—
—l—( A2u+ AQ/\ ) (G) + <2n2 Qn) Ag/M(G)
1 1 G’
+<M‘2n)f‘2ﬂ<a> }
G/ ﬁ G/ ﬁ 2n+1
+A2<6> (bwm—w—a/iQ)—i—fz{Ag(a) }

G/ L 4n+1 G/
+7}2{A2 (6) } — k2A1<G) = 0. (122)

Then, equating the coefficient of each power of G'/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, reduces to
142 2 +koy/ 2
e 1T n2 $ | Ehe §1&2 + ak 51, (123)
4n+1)2n(bk — 1) &1(bk — 1)
(14 2n)B2agl + dnPp G AR
N (1+ 2n)E2B2b ’

(124)
A = (—) " A, (125)
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ko = klg_; (126)
p=0, (127)
_8
N2 = 51, (128)
1
(1+ 2n)&?

= 73 129
2(1 + n)§2771A%n ( )

where B, k, Ay are arbitrary constants.
Equating the two expressions for the soliton speed v from (20) and (124) implies

B:iangAgn\/( m (1 — br) (130)

& 1+ 2n)(b2w — abk —a)’
which immediately prompts the constraint
m (b*w — abk — a)(1 — bk) > 0. (131)
Now, from Eq. (125), we have
1
n-(8) 152
which immediately prompts the constraint
§1§2 > 0. (133)
By Eq. (128), we get
&m — & = 0. (134)

Thus, we obtain the exact traveling wave solution of Egs. (115) and (116) as

B (14 2n)& né (14 2n)(1 —br) &
q(z,t) = {—7 1+ tanh{ 30+ 7) \/Ul(b%’ ~abi—a) (x — vt)}] }

41+ n)m
x el(—rtwt+0) (135)
[ a42me né, (1+ 2n)(1 — br) .
r(@t) = {_4(1 +n)éam = tanh{ 2(1+mn) \/m (b*w — abk — a) (z - vt)}] }
x el —ratwt+0) (136)

which are dark 1-soliton solutions. Then the singular 1-soliton solutions are:

B (14 2n)& néy (14 2n)(1 —br) &
q(x,t) = {—7 1+ coth{2(1 ) \/m(b% = abr—a) (x — vt)H }

41+ n)m
x el(—rtwt+0) (137)
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1

né (1 +2n)(1 — bk) o
1 COth{ 2(1+mn) \/m(b%; — abk — a) (- Ut)H }

~ ei(—nr+wt+9)’ (138)

) (1+2n)&?
riz.f) = { 41+ n)éam

where v is given by Eq. (20), and w is given by Eq. (123). There are five con-
straint conditions in order for these analytical solutions to exist, they are given by
Eqgs. (131)—-(134) and ko = (k1&1) /&2, respectively.

4. Multiple-Core Couplers (Coupling with Nearest Neighbors)

The governing equation for twin-core couplers is given by!—638

igt” + arg®) + bigl) + aF(jq0?)g® = kgt — 2¢O 4 V], (139)

where 1 <1 < N. Equation (139) represents the general model for optical couplers
where coupling with nearest neighbors is considered. Here k; are, as before, the
coupling coefficients. In order to address this model for the four forms of nonlinear
media, the initial hypothesis is taken to be

¢V (z,t) = Pz, t)e @D, (140)

where the amplitude component of soliton is P;(x, t) while the amplitude component

carries the same definition as in (9) or (10). After substituting this hypothesis (140)

into (139), the resulting expression is split into real and imaginary components. The

imaginary part gives the speed of the soliton as

_ hw —2ak

1-bk

The speed of the soliton stays the same irrespective of the type of nonlinearity and
type of solitons that is going to be addressed. Next, the real part implies

8Pz 9*P,

(141)

vy + bla o + Pi(bwk —w — ai?) + ¢ F(P?)P,
—k[P—1 —2P 4+ Pi41] =0. (142)
Under the traveling wave transformation
P(z,t) =U(1), 7= B(z—7t) (143)
we have
2Ul )
(a; — byv)B? 7 (hwk — w — ai?) + e F(UHU,
— kl[Ul,1 —2U; + Ul+1] =0. (144)

4.1. Kerr law nonlinearity
For Kerr law, the coupled NLSE modifies to
zq( )+ argV) + blq + gV 2q® = ky[qtD) — 24 + ¢UF)], (145)
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For hypothesis given by (140) and (143), Eq. (139) reduces to

b) 32 LY 4 U )+ aUp
(a; — byv) = + U(bwk — w — ajk*) + qU;
— kl[Ul,1 —2U; + Ul+1] =0. (146)

We then assume that Eq. (146) has the following formal solution:

Ui(r) = Ay (%) . AL £0, (147)

where A; are constants to be determined later and G satisfies Eq. (30). Thus, we
obtain

) G"\° G"\* 2 (G
(a; — bjv)B“< 24, el + 3A;\ el + (A + AN rel + A\uA;

G a\?
+ A (5) (hwk —w — ai?) + ¢ A} <E>

el
— kl(Al—l — 24, + Al+1) (5) =0. (148)

Then, equating the coefficient of each power of G’/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

2B2al + ClAl2

_ 2B%+ A} 14
Y 2B2h, e
‘o (150)
3 2 _
L per Ay + Ajagk?® + ki(Ai— — 24, + Al+1)7 (151)
Az(blfi - 1)

where B, k, A, k;, p are arbitrary constants.
Next, equating the two values of the speed v from the imaginary part equa-
tion (141) and real part equation (149) gives the free parameter

Al(blli — 1)\/ —Alcl

B=+ , (152)
2(bl2luClA? + b%Ame + b%/{il(Al_l —2A; + Al+1)
— Alalblﬁ(blﬁ — 1) — Alal(blli — 1))
which again poses the constraint
A (Ve A 4 b Ajags® + bk (A1 — 2A; + Ay q)
— Alalblli(blli — 1) — Alal(bm — 1)) < 0. (153)

Substituting the general solutions of the second-order LODE into the formula (147),
we have three types of traveling wave solutions of Eq. (145) as follows:
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When p < 0, we obtain the hyperbolic function traveling wave solution

B Cy sinh(y/—p(z — vt)) + Cq cosh(y/—p(x — vt))
0O (@1) = A/ (Cl cosh(y/—pu(z — vt)) + Cy sinh(y/—p(x — vt)))

% ei(fmc+wt+0), (154)

where Cy and Cy are arbitrary constants and parameter B is given by (152), while
the speed of the soliton is (141) or (149) and finally the wave number of the soliton
is dictated by (151). These solitons will exist provided the constraint condition
given by (153) holds. On the other hand, assuming Cy # 0 and Cy = 0, the dark
1-soliton solution that falls out is:

¢ (z,t) = Ajv/—ptanh{y/—p(z — vt) el -ratwt+o) (155)

and again assuming C7; = 0 and Cs # 0, then we obtain singular 1-soliton solution
for Eq. (145) as

¢ (x,t) = Aj/—pcoth{y/—p(x — vt) el -ratwt+o) (156)

where parameter B is given by (152), while the speed of the soliton is (141) or (149)
and finally the wave number of the soliton is dictated by (151). These solitons will
exist if the constraint condition given by (153) holds.

When p > 0, traveling wave solution is:

V(. t) = —Cysin(y/i(x — vt)) + Ca cos(y/p(x — vt))
¢(@ 1) = A ( C1 cos(y/(x — vt)) + Cosin(y/fa(x — vt)) )

% ei(fl-m:+wt+9)7 (157)

where Cy and Cy are arbitrary constants and parameter B is given by (152), while
the speed of the soliton is (141) or (149) and finally the wave number of the soliton
is dictated by (151). These solitons will exist as long as the constraint condition
given by (153) stays.

Also, with the assumption C; # 0 and Cs = 0, the singular periodic solutions
are

¢ (x,t) = — A /mtan{/u(x — vt) el retwt+o) (158)
and when C; =0, Cy #0
¢ (x,t) = Aj\/icot{\/u(x — vt) pel(-rotwitd) (159)

where parameter B is given by (152), while the speed of the soliton is (141) or (149)
and finally the wave number is given by (151). These are singular periodic solutions
that exist whenever the constraint conditions given by (153) hold.

For ;1 = 0, we obtain plane wave solution

A C -
@) ¢ 12 i(—kax+wt+0) 160
@) = S G BE =" ’ (160)
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where parameter B is given by (152), while the speed of the soliton is (141) or (149)
and finally the wave number of the soliton is dictated by (151). These solitons will
exist provided the constraint condition given by (153) holds.

4.2. Power law nonlinearity
For power law, the coupled NLSE modifies to
ig” + aig) + bigl + alg" PV = kilg! ™Y —2¢0 + ¢V (161)
In this case, Eq. (124) gives
2 d°Ui 2 2n+1
(a; — byv)B = + Ui(bwk — w — aik°) + qU;
—ki[U—1 — 2U; + U] = 0. (162)

According to the previous steps, using the balancing procedure between U]’ and
U™ in Eq. (162), we get

1
N+2=@2n+1)N & 2N =2 N = —.
n

We then assume that Eq. (162) has the following formal solution:

Ui(r) = Al(i) , A #0, (163)

where A; are constants to be determined later and G satisfies Eq. (30). Thus, we
obtain
{5 4(8) (32 w(2)
+ (et ) (g) +(2- )Am(g>
) we(§) )

G’ i . el 142
+ A (6) (hwk —w — ajk?) + clAl2 +1 (5)

G\
— kl(Al,1 —2A; + Al+1) (6) =0. (164)

Then, equating the coefficient of each power of G'/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

~ (L+n)B%a; + ¢n?AP"
o (1 —|—n)32bl ’

(165)
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A=pu=0, (166)
w— Alam2 + k’l(Al_l —2A; + Al+1)
B Al(bl,‘i — 1) ’
where B, k, A;, k; are arbitrary constants. Next, equating the two values of the
speed v from the imaginary part equation (141) and real part equation (165) gives

(167)

the free parameter

nAl"(bm — 1)\/ _Alcl

B=+ , (168)
(1 + n)(b?AlamQ + b%/{il(Al_l —2A; + Al+1)
— Alalblﬁ(blli — 1) — Alal(bm — 1))
which again poses the constraint
Alcl(b?AlamQ + b%/{il(Al_l —2A; + Al+1)
— Alalblﬁ(blli — 1) — Alal(bm — 1)) < 0. (169)
Since A = p = 0, we obtain plane wave solution
q(l)(x t) — A Co B pl(—ratwt+0) (170)
’ C1 + CyB(x — vt) ’

where Cy and Cj are arbitrary constants and parameter B is given by (168), while
the speed of the soliton is (141) or (165) and finally the wave number of the soliton
is dictated by (167). These solitons will exist with the constraint condition given
by (169).

On the other hand, to obtain an analytic solution, we use the transformations
Uy =V, Uy = Uiy = Uy in Eq. (162) to find

(@ — b)) B*{(1 — 2n)(V/)? + 20V1V}"}
+d(bwk — w — aip®)n* V2 + den®VE 4+ 16kn? V2 = 0. (171)

Balancing the order of V;V/” and V;* in Eq. (171), we have N = 2. Therefore,
Eq. (171) has the solutions in the form

G’ G"\*
Vi(r) = A + An (6) + Ai2 (6) . (172)

Substituting Eq. (172) along with Eq. (30) in Eq. (171) and setting all the coeffi-
cients of powers G'/G to be zero, then we obtain a system of nonlinear algebraic
equations and by solving it, we obtain

" B?(byv — a;)(A? — 4p) + 4n?(aix? — 4ky)

1
An2(bik — 1) ’ (173)
B?(a; — bv)(1
A = B @ o)A ) (174)
n=c;
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_)\BQ(al —bw)(1+n)

A = 1
11 nQCl ) (75)
B?(a; — bpw)(1+n
4= Bzt (176)
n=cy

where B, k, A, p are arbitrary constants.
Now, from Eqgs. (141) and (173), we have
B2a;(biks + 1)(A2 — 4p) + (bk — 1)(4naik? — 16n°k)

= . 1
“ 4n?(bik — 1)% 4+ (A2 — 4u) B2b? (177)

Substituting the general solutions of second-order LODE into (172) gives three
types of traveling wave solutions.

When A = A2 — 4u > 0, we obtain the hyperbolic function traveling wave
solution

¢ (z,t)

B?(a; = bv)(\ — 4p) (1 + 1)

4n2¢
A2 —4 A2 —4 2\ T
C1 sinh(%’uB(‘r — vt)> + Cy cosh(%B(m —vt))
x| 1— > >
C1 cosh<7‘)\2_4’u3(x—vt)> + Co sinh(%B(m—vt))
« 61’(7,%er9.)1er9)7 (178)

where C7 and Cy are arbitrary constants and w is given by Eq. (177), while v is
given by Eq. (141).
On the other hand, assuming C7 # 0 and Cy = 0 the dark soliton solution is:

B2(a; — bw)(\* — 4p)(1 + n) tanhQ{@B(x — vt)}] }

) t) =
¢ (@:t) 4An2¢y 2

« ei(fmv+wt+0), (179)

and assuming C7 = 0 and Cy # 0, the singular 1-soliton solution is

_Ba - b)(¥ — 4+ n) Coth2{@3(x - vt)}] )
2

) t) =
q (x’ ) 4n20l

> ei(—rcat—‘—ut—Q—O), (180)
where w is given by Eq. (177), while v is given by Eq. (141).
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When A = A2—4 < 0, we obtain trigonometric function traveling wave solution
w g g

¢ (z,1)

B(a; = bw)(\* — 4p) (1 +n)
4n2¢

1
2\ 2n
_)\2 —_ )2
- sin(%B(w — vt)> + Cy cos(%B(m — vt))
x |14 > >
1 cos<7‘4ﬂ2_)\3(w —vt)) + Co sin(%B(m—vt))
% ei(fmv+wt+0)’ (181)

where C; and Cy are arbitrary constants and w is given by Eq. (177), while v is
given by Eq. (141).

Also, upon assuming C7 # 0 and Cy = 0, the following singular periodic solu-
tions are revealed:

B2(a; — bo)(\2 — 4p)(1 + n) tanQ{ Vi — /\2B(x - Ut)H %

D (p t) =
g (x,1) i 5

~ ei(—nr—i—wt—l—G), (182)

and when C7, =0, Cy #0
B? —b A —4 1+ 4p — N2 o
(@ ) 2 n) cot2{ K B(x — vt)H

0 _
q (x?t) 4”261 2

> ei(fmv+wt+0), (183)

where w is given by Eq. (177), while v is given by Eq. (141).
Finally, for A = A2 — 4, = 0, we obtain plane wave solution:

| BP(a—b)(L+n) Cy 71
n2c Cy + CoB(x — vt)

> ei(fnm+wt+9)7 (]_84)

q(l)(% t) =

where w is given by Eq. (177), while v is given by Eq. (141).

4.3. Parabolic law nonlinearity
In this case, the governing equation reduces to! —6:3%

igt" + aig) + bigl) + &1V 12 + mlg® Mg = kgD — 2¢@ + ¢HV],  (185)
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where 1 <[ < N. The real part equation therefore is

L, d2U; )
(a; — bv)B = + Uj(bwk — w — ajk°)
+§UE 4+ U — ky(Ui—y — 2U; + Upyq) = 0. (186)

We then assume that Eq. (186) has the following formal solutions:

Ul(r) = A (%/) ’ , A #0, (187)

where A; are constants to be determined later and G satisfies Eq. (30). Thus, we
obtain

5 3
3 G'\? G"\?
(al - blU)B2{1Al (E) + AlA(E)
1 1L\ (G\: 1, ,/G\?
+ <§Al,u+ ZAM ) (5) - ZAW el
a3 ) ani)’ ani)’
+Al<6) (hwk —w — qir”) + & Al(?) + Al(?)

G\ ?
— kl(Al—l —2A; + Al+1) (E) =0. (188)

Then, equating the coefficient of each power of G'/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

- 47}[1421 + BBzal

1
357, ; (189)
3G
vt (190)
=0, (191)
2 2 _
" 36 A + 16 Aiarr”m + 16k (Ai—1 — 24+ Aiq) (192)

16Alm(bl/€ — 1) ’

where B, k, Aj, k; are arbitrary constants.
Now, equating the two values of the speed v from the imaginary part equa-
tion (141) and real part equation (189) gives the free parameter
2A12 m(l — blli)

B=4 193
V3w — abik — ap) (193)

which immediately prompts the constraint

m(1 — br)(biw — aibik — ag) > 0. (194)
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Thus, we obtain the exact traveling wave solution of Eq. (185) as

(g gy — 38 & 3(1 —bik) v ‘
a7, 1) _{ 8 1= tan {4\/77l(bl2w—albm—al)( t)}l}

m
> ei(—ﬁaﬁ—‘—ut—‘—@), (195)

which is a dark 1-soliton solution and

O (g g) — _3_51 & 3(1 — bik) o 3
g (@.t) { 8 th{4\/nl(bl2w—albln—al)( t)}]}

m
> ei(fnm+wt+9)7 (]_96)

which is a singular 1-soliton solution. Here, the parameter B is given by (193), and
speed of the soliton is (141) or (189) and the wave number of the soliton is dictated
by (192). These solitons will exist provided the constraint condition given by (194)
holds.

4.4. Dual-power law nonlinearity

For dual-power law nonlinearity, the governing equation is' —6-3%

Zq( ) + alq(l) + bqut (§l|q(l)\2n + 771|q(l)\4n) @

= ki[q"™Y) = 2¢W 4+ ¢"H], (197)
where 1 <[ < N. The real part equation therefore is
d?U, n
(a1 — byw) B? d7'2l + Uy(bywk — w — ayx?) + &UZQ +1

+ UM — ky(Up—y — 2U; + Upgq) = 0. (198)
We then assume that Eq. (197) has the following formal solutions:

Ui(r) = Az(i) . AL #0, (199)

where A; are constants to be determined later and G satisfies Eq. (30). Thus, we
obtain

s (L LY (EYT (2 AL
(a1 = bw)B {<4n2+2n A G + 2n2 2n A G
GNT (1 1 G\
2 —_—
—|—< Alu+4 AM)(G) +<2n2 2n)Azu)\<G>
11 G\ 72
+(m‘2n>“h“(a> }
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1 1 2n+1
G\ 9 G\
+Al<5) (wk — w — qiK?) +fl{Al<6> }

G/ ﬁ An+1 G/ ﬁ
+mk A <6> — ki (Ai-1 — 241+ Aigq) <6> =0. (200)

Then, equating the coefficient of each power of G’/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

AP AP+ (14 2n) B2

(1 + 2n)B2b, ’ (201)

_ (14 2n)&
A maAr e
p=0, (203)

(1 + 2n)§l2Al + 4(1 + n)QAlal/iQm + 4(1 + n)2kml(Al_1 —2A; + Al+1)
4(1 + n)2Alm(blli — 1) ’
(204)

where B, k, Aj, k; are arbitrary constants.
Next, equating the two values of the speed v from the imaginary part equation
(141) and real part equation (201) gives the free parameter
QnAlQn m(l - blﬁ)

b== V(@ +2n)(VPw — aibik — a)) (205)

which immediately prompts the constraint

(1 —bk)(biw — aibik — a;) > 0. (206)

Thus, we secure dark and singular soliton solutions given by

C](l)(!IJ,t)
_ ) (@+2n)G né; (1+2n)(1 — bik) g
= {_m 14 tanh{ 2(1+n) \/m(blzw bk — ay) (v — vt)H }
% ei(—ﬁm—‘—wt—‘—@) (207)
and
¢V (@, 1)
_ ) (42§ né; (1+2n)(1 — byk) 2
- {‘m b Coth{ 20+ 1) \/m(b%w e (e U@H }
% ei(—nr—i—wt—i-e)’ (208)
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respectively, where parameter B is given by (205), while the speed of the soliton
is (141) or (201) and the wave number of the soliton is dictated by (204). These
solitons will exist provided the constraint condition given by (206) holds.

5. Multiple-Core Couplers (Coupling with All Neighbors)
The governing equation for multiple-core couplers, for coupling with all neighbors
iS38
N
it + aig) + 0igl) + aF(1g92)g® = Y Nmg™, (209)
m=1
where 1 < [ < N and )\, represents the coupling coefficient with all neighbors.
The solution hypothesis is taken to be the same as given by (140). Substituting this
hypothesis into (209) and again splitting into real and imaginary parts, one obtains
the same speed of solitons, as in (141), that is valid for all types of solitons in all
nonlinear media considered in this paper. The real part equation now is
iy >*P

P —w— FP P mPm = 21
a]——= 72 +bl8 8t+ l(blcm w— aik )—|—Cz l T — Z)\l 0. ( O)

Under the traveling wave transformation
Pz, t) =U(1), 7= B(z—ul) (211)

we have

d*U,
2
(al — blv)B dT2

—l—Ul(blw/i—w—am )—l—ch Ul Ul Z ANimUm = 0. (212)

5.1. Kerr law nonlinearity

For Kerr law, governing equation is®®

zq( ) + agl) + blq + clgW2gV = Z Aimg™. (213)

m=1

The real part equation (212) therefore reduces to

d*U,
2
(al — bl’l))B dT2

+ U(bwk —w — am )+ clUl Z AU = 0. (214)

We then assume that Eq. (214) has the following formal solution:

) = A, Ato (215)
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where A; are constants to be determined later and G satisfies Eq. (30). Thus, we
obtain

) el 3 el 2 ) el
(a; — bjv)B“< 24, el + 3A;\ el + A+ AN rel + A\uA;

+Al<%) (blwﬁ—w—alﬂ)—i—clAl(G) Z)\lm m(—)zo.

(216)

Then, equating the coefficient of each power of G'/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

o 2BQal + ClAl2

_ 21
v 2B2b, ' )
Ao, (218)
3 2 N
_ pad] + A £ 3,0 M A (219)
Al(bl,‘i — 1)

where B, k, A;, k;, p are arbitrary constants.
Next, equating the two values of the speed v from the imaginary part equation
(141) and real part equation (217) gives the free parameter

Al(blli — 1)\/ —Alcl

B=+
\/2(1)%/10“4? + leAlamQ + bl2 Zzzl NimAm,

(220)

— Alalblli(blﬁ — 1) — Alal(bm — 1))

which again poses the constraint

A (blz,uclA? + blelamz

N
+bl2 Z AN A — Alalblﬁ(blﬁ - 1) — Alal(blli — 1)) < 0. (221)

Substituting the general solutions of the second-order LODE into the formulas
(215), we have three types of traveling wave solutions of Eq. (213).
When p < 0, we obtain the hyperbolic function traveling wave solution

B Cy sinh(y/—p(z — vt)) + Cq cosh(y/—p(x — vt))
V(1) = A/ (Cl cosh(y/—p(z — vt)) + Cy sinh(y/—p(x — vt)))

« ei(fmv+wt+0), (222)

where C and Cy are arbitrary constants and parameter B is given by (220), while
the speed of the soliton is (141) or (217) and finally the wave number of the soliton is
dictated by (219). These solitons will exist provided the constraint condition given
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by (221) holds. On the other hand, assuming C; # 0 and Cy = 0 dark 1-soliton
solution is given by

¢ (z,t) = Ajv/—ptanh{y/—p(z — vt) el -ratwt+o) (223)
and again assuming C; = 0 and Cs # 0, singular 1-soliton solution for Eq. (213) is
¢ (x,t) = Ajy/—pcoth{y/—p(x — vt) el -ratwt+o) (224)

where parameter B is given by (220), while the speed of the soliton is (141) or (217)
and finally the wave number of the soliton is dictated by (219). These solitons will
exist as long as the constraint condition given by (221) holds.

If 1+ > 0, solutions in terms of trigonometric functions are

B —Cysin(y/u(x — vt)) + Ca cos(y/1(x — vt))
¢V(a.1) = A < Cy cos(y/mu(x — vt)) + Cosin(y/iu(x — vt)) )

% ei(—nm+wt+9)7 (225)

where Cy and Cy are arbitrary constants and parameter B is given by (220), while
the speed of the soliton is (141) or (217) and finally the wave number of the soliton
is dictated by (219). These solitons will exist provided the constraint condition
given by (221) stays valid.

Also, with the assumption Cy # 0 and Cy = 0,

¢ (x,t) = — A /mtan{/u(x — vt) el raetwt+o) (226)
and when C; =0, C3 # 0 Eq. (213) will be
¢"(x,t) = Ary/cot{/u(x — vt) e’ rm o) (227)

which represents a pair of singular periodic solutions. The parameter B is given by
(220), while the speed of the soliton is (141) or (217) and finally the wave number
of the soliton is dictated by (219). These solitons will exist provided the constraint
condition given by (221) is carried out.

When i = 0, the plane wave solution is

A C -
@) ¢ 12 i(—kax+wt+0) 298
@) = S G BE = ’ (228)

with parameter B given by (220), while the speed of the soliton by (141) or (217)
and finally the wave number of the soliton is dictated by (219). These solitons will
exist provided the constraint condition given by (221) holds.

5.2. Power law nonlinearity

For power law, the coupled NLSE modifies to®

N
ig” + a1g) + bigl + crlgV PV = > dima ™. (229)
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Therefore, the real part equation reduces to

2

(al —blv) 2d U

N
g2 + Ui(bwk — w — i) + clUl2"+1 — Z AimUnm = 0. (230)

We then assume that Eq. (230) has the following formal solution:

Ui(r) = Al<g> . A #£0, (231)

where A; are constants to be determined later and G satisfies Eq. (30). Thus, we

obtain
1 G’ 2 G’
(al_bw)B2{<ﬁ n>Al<G) +<n2 n)Al)(G)
/ _71
(B ) (§) "+ (B-2)aa(§)
G
11 G\
() () }
G\ " G\
+ A (E) (blcm —w — amQ) + clA?"H <E>

N 1
G\ "
—mZ:lAlmAm <5) = 0. (232)

Then, equating the coefficient of each power of G'/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

(1 n)B%a; + cn? A"

2
0+ Bh (233)
A=p=0, (234)
2 N
_ Alalﬁ + Zm:l )\lmAm (235)

Al(bl,‘i — 1) ’
where B, k, A;, k; are arbitrary constants. Next, equating the two values of the
speed v from the imaginary part equation (141) and real part equation (233) gives
the free parameter

TLAln(blH — 1)\/ _Alcl
\/(1 + ) (b2 AiaR? 4+ b2 N N A — Ayarbir(bis — 1) — Agay (b — 1))
(236)

B =+

)

which again poses the constraint

N
Alcl <bl2Alalli2 + le Z /\lmAm — Alalblli(blﬁ — 1) — Alal(blli — 1)) < 0. (237)

m=1
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Since A = p = 0, we obtain plane wave solution

C. o
@) = A 2 i(—kxtwt+0) 238
a7 t) I{Cl-l-CgB(x—vt)} ¢ ’ (238)

where C7 and Cy are arbitrary constants and parameter B is given by (236), while
the speed of the soliton is (141) or (233) and finally the wave number of the soliton
is dictated by (235). These solitons will exist with the constraint condition given

by (237).
On the other hand, to obtain an analytic solution, we use the transformations
1
U, = ‘/22"7 Uy=Uy=---=Ux =U; in Eq. (230) to find

(a1 — b)) B2{(1 — 2n)(V/)? + 2nViV/"} + 4(biwk — w — ak®)n?V}?

N
+4em®Vi = 4n® > NV = 0. (239)

m=1

Balancing the order of V;V/” and V;* in Eq. (239), we have N = 2. Therefore,
Eq. (239) has the solutions in the form

led el 2
Vi(r) = A + An (6) + Ai2 (6) . (240)

Substituting Eq. (240) along with Eq. (30) in Eq. (239) and setting all the coeffi-
cients of powers G'/G to be zero, then we obtain a system of nonlinear algebraic
equations and by solving it, we obtain

B2(bjv — a;) (A2 — 4p) + 4n?(aix? + 22:1 Aim.)

= 241
“ An2(bis — 1) ’ (241)
2 _
Azoz—uB (a Szv)(l—i—n)’ (242)
n<c
AB2(a; — bpv)(1 +n
4y = 2B )Lt (243)
n=c;
B2(a; — biu)(1 +n
4 = Bl b0t (244)
n=c;

where B, K, A, p are arbitrary constants.
Now, from Egs. (141) and (241), we have

_ B2ay(bik + )N — 4p) + (ks — D)(dn?aik® + 4n® S0 i)

4n?(bik — 1)2 4+ (A2 — 4p) B2b? - (249)

Substituting the general solutions of second-order LODE into (240) leads to three
types of traveling wave solutions.

When A = X2 — 4u > 0, we obtain the hyperbolic function traveling wave
solution
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¢ (z,1)

B?(a; = bpo)(A* —4p) (1 + n)
4dn2¢

1
2\ 72n
/N2 _ 2 _
(1 sinh (%B(w — vt)> + C3 cosh (%B(w — vt)>
x | 1=
/\2 _ 2 _
(' cosh (%B(m — vt)) + Casinh (%B(w — vt)>
x ei(—nr+wt+9)’ (246)

where C; and Cy are arbitrary constants and w is given by Eq. (245), while v is
given by Eq. (141).

As a special case, assuming C; # 0 and Cy = 0 one secures dark 1-soliton
solution

) t) =
¢ (1) dn2¢ 2

B2(a; — byw)(A2 — 4p)(1 + n) tanhQ{ VA2 = W vt)H =

« ei(—r@aﬁ—‘—wt—Q—O)’ (247)
while if Cy = 0 and Cy # 0, the singular 1-soliton solution is

_ B — )V — 4p) (L +n) Coth2{@3(x - vt)}] }

O (p. 1) =
q (‘r’ ) 4n20l 2

« ei(fmv+wt+0)’ (248)

with w given by Eq. (245), while v given by Eq. (141).
With A = A2 — 4 < 0, we obtain traveling wave solution with trigonometric
functions

¢ (z,t)

B?(a — bv)(\* — 4p) (1 +n)
4n2¢

1
2\ 72
_)\2 _ )2
-1 sm( 4’u2 A Bz — vt)) + Cy cos( MQ A B(x — vt))
x| 1+ 3 3
C1 cos( : 4M2_)\ B(w—vt)) +C2s1n< M2_)\ B(x—vt))
% 61’(7,'1m+wt+9)7 (249)
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where C; and Cy are arbitrary constants and w is given by Eq. (245), while v is
given by Eq. (141).
For the special case, C; # 0 and Cy = 0,

1

2(a — 2 2 I

B?(a; — biw)(A* —4u)(1 +n) tan? dp— A Bl —vt)
4n2¢ 2

q(l)(x, t) =

% ei(—nr+wt+9), (250)
andCle, CQ?EO

1
B?(a; — bw)(\? — 4p)(1 +n) 4y — N2 o
O] — 2 _
g (z,t) i cot 5 B(x — vt)
% ei(fmv+wt+0), (251)

which represents singular periodic solutions, where w is given by Eq. (245), while
v is given by Eq. (141).
Finally, for A = A2 — 4, = 0, the plane wave solution is

| BP(a—b)(L+n) Cy 71
n2c Cy + CoB(x — vt)

> ei(fnm+wt+9)7 (252)

where w is given by Eq. (245), while v is given by Eq. (141).

q(l)(x7 t) =

5.3. Parabolic law nonlinearity

In this case, the governing equation reduces to>®

. 1 m

iq" + aigl) + gl + (&l VP + mlg®)gV = Z Aimq ™ (253)
where 1 < [ < N. The real part equation therefore is

d*U,
2
(al — bl’l))B dr2

N
+ U(bwk — w — am2) + flUlS + mUl5 — Z AU = 0. (254)
We then assume that Eq. (254) has the following formal solutions:

Ui(r) = Az(i) . A #0, (255)

where A; are constants to be determined later and G satisfies Eq. (30). Then,

- (3a(8) e an()
s ) (8- (%))
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143 , % 5
+Al<g> (blwn—w—amz)—i-él{Al(%) } —I—m{Al(%) }

— Z Aim A m<G/> =0. (256)

Then, equating the coefficient of each power of G'/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

_ 477lA;L + 3B2al

2
5B (257)
38
p— 2
e (258)
p=0, (259)
2A; 4+ 16A 1 mAm
3§l 1+ 16 Aja k% + 67]12 1N (260)

16Alm(bl/€ — 1) ’

where B, k, Aj, k; are arbitrary constants.
Next, equating the two values of the speed v from the imaginary part equation
(141) and real part equation (257) gives the free parameter

2 o
B = o Arvm{ = br) (261)
\/S(bfw —aibik — ay)

which immediately kicks in the constraint

(1 —bk)(biw — aibik — ap) > 0. (262)

Thus, we obtain the exact traveling wave solution of Eq. (253) as

w36 & 3(1— bir) - ’
ql(x,t)_{ S 1+ ta h{4\/77l(blzw_alblﬁ:_al)(x vt)

% ei(—nr+wt+9) (263)
and
38 & 3(1 = buk) ’
O (x,t) = l+c = — vt
¢ (1) { 8y { 4 \/m(b?w —aibik — ay) (z —vt)

> ei(fnerthrG), (264)

which are dark and singular soliton solutions, respectively. The parameter B is given
by (261), while the speed of the soliton is (141) or (257) and the wave number of
the soliton is dictated by (260). These solitons will exist provided the constraint
condition given by (262) holds.
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5.4. Dual-power law nonlinearity

For dual-power law nonlinearity, the governing equation is38
N
ig”) + aig) + bigl! + @l + mlg" )" = 3 Mmg™, - (265)
m=1

where 1 < [ < N. The real part equation therefore is

d2
(a; — bv)B? = Ly Uy(bwk — w — ayr?)
N
+EUPT A U = Y AU = 0, (266)

We then assume that Eq. (265) has the following formal solutions:

Ui(r) = Al(i) . AL#0, (267)

where A; are constants to be determined later and G satisfies Eq. (30). Thus,

s (e Y (VT (L ) ()T
(al blU)B {<4n2 + o A G + oz + — o A\ G
AN E ¢
2 —_—
—I—( Al/‘—i— AM) (G) +<2n2 2n)Al,u)\<G>
11 L (G2
(g~ 30) ()
1 1 2n+1
G/ 2n 9 2n
+Al<5) (hwk —w — ik )—l—fl{Al( ) }
G/ ﬁ 4n+1 G/ ﬁ
{Al<G> } — Z N A, (—) =0. (268)

Then, equating the coefficient of each power of G'/G to zero, we obtain a system
of nonlinear algebraic equations and by solving it, we get

_AnP AP 4 (14 2n)B?a

QR

2
D (269)
(1 + 271)&
PR S a0 270
2(1 + TL)Alznm ( )
b=, (211)
(T4 2n)E A + 41 4 n)2 Ay + A1+ n)np Z 1 Atm A (272)

4(1 + n)QAlT]l(blli — 1) ’
where B, k, A;, k; are arbitrary constants.
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Next, equating the two values of the speed v from the imaginary part equation
(141) and real part equation (269) gives the free parameter

2n o
B—+ 2nAl m(l blﬁ) (273)
V(@ +2n)(VPw — aibik — a))

which immediately introduces the constraint

m(1 = br)(biw — aibik — ap) > 0. (274)
Thus, we obtain the exact traveling wave solution of Eq. (265) as
¢ (z,1)
_ ) _ (1 + 2n)§l 1+ tanh nfl (1 ;_ 2”)(1 B bl’i) (.’E _ ’Ut)
4(1+n)m 2(1+n) | m(bjw — atbik — a;)
« gi(—ratwi+0) (275)
and
¢ (z,1)
(L+2n)& ng [ (1L+20)(1—bix) "
=q————>|1=£coth — vt
{ 4(1+n)m 0 2(1+n) \| n(b¥w — aibis — a;) (= t)
% ei(—nr+wt+9), (276)

which represents dark and singular 1-soliton solutions, respectively. The parameter
B is given by (273), while the speed of the soliton is (141) or (269) and the wave
number of the soliton is dictated by (272). These solitons will exist provided the
constraint condition given by (274) are in place.

6. Conclusions

This paper obtained dark and singular soliton solutions to optical couplers by using
G'/G-expansion method. There are four nonlinear media studied in this paper. They
are Kerr law, power law, parabolic law, and dual-power law. Also, two types of
couplers are considered, which are twin-core couplers and multiple-core couplers.
This integration scheme, applied to all of these four laws of nonlinearity, only allows
to retrieve dark and singular solitons for all laws of nonlinearity and both forms of
couplers. This therefore presents a limitation to this scheme being unable to obtain
bright soliton solutions. However, bright soliton solutions, for optical couplers are
already reported during 2014 with ansatz approach.3®

There is another drawback with this integration scheme, this tool cannot be
applied to couplers with log-law nonlinearity. Therefore, the discussion on couplers
in log-law nonlinear medium is skipped in this paper. However, exact 1-soliton
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solutions for log-law medium, known as Gaussons were reported in the past where
ansatz approach was implemented to extract these Gaussons.®38

The results of this paper is a pillar of strength for further studies in the area
of optical couplers. It is therefore necessary to address the governing NLSE for
optical couplers with several perturbation terms. This will lead to an extended
version of NLSE which will later be integrated and the results will be reported
soon. Moreover, additional integration techniques such as Lie symmetry will be
implemented to integrate the model equation. Additionally, the governing equation
will be considered with time-dependent coefficients. All of these exciting projects
will be handled shortly.
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