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† Institute of Applied Physics—Nonlinear Dynamics, Darmstadt University of
Technology, Hochschulstr. 4a, 64289 Darmstadt, Germany

‡ Institute of Physics, P.O. Box 57, 11001 Belgrade, Yugoslavia

Abstract—We investigate spatio-temporal dynamics of two-wave mixing processes in a photorefractive
medium, considering two different configurations. In the counterpropagating geometry, above a primary
instability threshold we observe the onset of spontaneous spatial modulation of the Gaussian beam
profile due to a static external electric field in the case of a self-focusing non-linearity. Running
transverse waves in the optical near field and wandering spots in the far field occur when one
transverse dimension is taken into account. Modulational inhomogeneities in the refractive index
grating along the transverse direction result in beam focusing effects. In the copropagating wave mixing
geometry within a unidirectional ring resonator we find four different mode-like structures with either
symmetric or antisymmetric field distributions. Regular and irregular spatio-temporal oscillations arise
for certain values of the resonator detuning. The temporal evolution of the chaotic mode oscillation
is represented by a heteroclinic tangency and the spatio-temporal oscillation is characterized by crisis-
induced intermittency. c© 1999 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

Structure formation in two- and four-wave mixing in photorefractive (PR) crystals has attracted
considerable attention in recent years. Due to the non-linear interaction of light with PR media,
a number of instabilities occurs leading to spatio-temporal dynamics in the transverse profile of
the light beams and the formation of regular and irregular patterns. Since non-linear effects in
PR crystals are significant even for very low laser intensities (of the order of mW/cm2), it is easy
to observe spatio-temporal patterns in this particular optical system. In addition, observation
and detection of these patterns is simplified due to the fact that most commonly used PR media
respond on a very slow time scale and thus structures evolve on the order of seconds or even
minutes.

Two-wave mixing (2WM) can be considered as the elementary wave mixing process with respect
to any other (higher order) wave mixing process. In this sense 2WM allows for two distinct
interaction configurations: the counterpropagating geometry (Fig. 1a), where the interaction
is dominated by reflection gratings, and the copropagating geometry, where the interaction is
dominated by transmission gratings. In the latter geometry we supply the second beam through
a feedback mechanism within a unidirectional ring resonator (Fig. 1b).

There have been two pioneering experiments on spatio-temporal structure formation in these
2WM geometries. The first one was done by Arecchi et al. in a unidirectional ring oscillator
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Fig. 1. Geometry of the two-wave mixing processes: (a) reflection geometry with an externally applied voltage V ,
(b) transmission geometry with a unidirectional ring cavity. z is the direction of propagation and x is the transverse

dimension.

arrangement with a BSO-crystal and confocal mirrors [1]. They observed periodic alteration
and chaotic itinerancy of transverse modes, depending on the value of the Fresnel number. In
the following years a number of investigations of the unidirectional ring oscillator have been
performed [2–4]. Theoretical explanations succeeded as far as the regular mode oscillation and
the formation of phase singularities are concerned, but failed in explaining the transition to
more complex spatio-temporal dynamics, owing to the lack of numerical methods for solving
the coupled partial differential equations of the two- and four-wave mixing processes.

The other pioneering experiment was done by Honda [5], who reported on the spontaneous
formation of hexagons in a KNbO3-crystal in the reflection geometry. Theoretical investigations
here were impeded by the fact that these structures occurred through reflection gratings, which
are known to cause great difficulties for both analytical and numerical treatment. Theoretical
predictions by means of linear stability analyses [6,7] offered improved understanding of the
origin of structures, but could not reveal the spatio-temporal dynamics that occur above the
primary instability threshold.

In this paper we present theoretical and numerical investigations of spatio-temporal structures
that occur in these two distinct 2WM configurations. The goal is to identify similarities and
differences in the spatio-temporal behaviour of these two systems, and to try to understand them
in terms of simple concepts of non-linear dynamics.

2. MODEL EQUATIONS

The 2WM process is described by the propagation of two beams through a non-linear PR
medium and their interaction with the medium. In the following we consider the standard
photorefractive 2WM equations in paraxial approximation, of the form [8,9]

∂zA1 + i f ∂2
xA1 +αA1 =−QA2 , (1a)

± ∂zA2 + i f ∂2
xA2 +αA2 =Q∗A1 . (1b)

A1,2(x, z) are the slowly varying envelopes of the beams, f is a measure for the magnitude of
diffraction, proportional to the inverse of the Fresnel number, andα is the absorption coefficient.
The plus-minus sign in Eq. (1b) refers to the co- and contra-directional propagation of the
second beam, respectively. The temporal evolution of the complex amplitude Q of the respective
transmission or reflection grating in the crystal is approximated by a relaxation equation of the
form [10]:

τ∂tQ+ ηQ = Γ A1A∗2
| A1 |2 + | A2 |2

. (2)
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τ is the relaxation time constant of the grating, η is a parameter dependent on internal electric
fields of the crystal, and Γ is the PR coupling constant. This model includes the non-local and
sluggish response of PR media, however all explicit spatial dependences in Q are neglected.

Equations (1) and (2) are solved numerically using our modified beam propagation method,
described in [9]. The corresponding boundary conditions are chosen consistently with the com-
mon experimental conditions to be Gaussian beams in combination with “open” lateral sides
(no reflecting or periodic boundaries). The longitudinal boundary conditions are specified in
detail in Section 3 and 4.

3. THE REFLECTION GEOMETRY

In reflection geometry we are dealing with two-point boundary conditions at the opposite
faces of the crystal. We choose Gaussian beam profiles in one transverse direction:

A1(x, z = 0) =C1 exp(−x2/w2
0), A2(x, z = L) = C2 exp(−x2/w2

0) . (3)

Here w0 is the beam radius to which the transverse coordinate will be scaled. Since only the input
intensity ratio r0 = I1(0)/I2(L) of the beams is a relevant parameter, we may put C1 = 1.0 and
C2 = r−1/2

0 . In order to control the coupling strength of the crystal, we apply a static external
electrical field E0 = V /L to the crystal in the direction of the grating wave vector. In this case
we have, according to Kukhtarev et al. [10]:

η = Ed + Eq + iE0

EM + Ed + iE0
, (4)

Γ = Γ0
(

1+ Eq

Ed

)
Ed + iE0

EM + Ed + iE0
, (5)

with Γ0 being the steady state coupling strength without external field. Ed = 1 kV/cm, Eq = 5
kV/cm and EM = 100 kV/cm are the characteristic internal fields describing electronic processes
in a BaTiO3-crystal. E0 will be scaled to Ed . Note that E0 effectively renders both the coupling
constant Γ and the relaxation time constant τ complex. Hence the external field E0 exerts a
profound influence on the process of wave mixing. By breaking the frequency degeneracy it
allows for the build-up of running gratings and the appearance of running transverse waves. In
this geometry the effect of absorption will be neglected.

3.1. Linear stability of transverse modes

The primary instability threshold for the onset of transverse patterns is determined by the
linear instability of the steady-state plane-wave solutions. These steady-state plane-wave solutions
( f = 0 and ∂tQ = 0) were derived in Yeh [11] and, including absorption, in Belić [12]. They are
the spatially homogeneous fixed-point solutions of the system. Their field amplitudes will be
denoted by A0

1(z) and A0
2(z), and the corresponding amplitude of the refractive index grating

by Q0(z). The stability analysis proceeds with a small perturbation of the wave and grating
amplitudes:

A1(z, x, t) = A0
1(z) [1+ εa1(z, x, t)] , (6)

A2(z, x, t) = A0
2(z) [1+ εa2(z, x, t)] , (7)

Q(z, x, t) = Q0(z)
[
1+ εq(z, x, t)

]
. (8)



712 O. SANDFUCHS et al.

The perturbations a1, a2 and q will be expanded in the transverse Fourier (x → K) and the
temporal Laplace space (t → λ). This yields an algebraic expression for q. After elimination of
q, the linearized equations are cast in the common matrix form,

∂za = A(z, K,λ) a(z, K,λ) , (9)

where a = (a1, a∗1 , a2, a∗2 )T . This non-autonomous equation cannot in general be solved analyt-
ically. The ratio of beams inside the crystal r(z) = I0

1 (z)/I
0
2 (z) is approximated by r = 1, which

is quite good for strong couplings and a weak incident backward beam. With this constraint
and a convenient choice of basis via a transformationU, the perturbation matrix reads:

A= U−1


γ − f K2

β+ f K2 0 0

0
0 −h(λ) − f K2

f K2 g(λ)

U . (10)

The functions g(λ) = λ[Γeτe/(λτe + 1) + (Γeτe)∗/(λτ∗e + 1)]/2 and h(λ) = λ[Γeτe/(λτe +
1)− (Γeτe)∗/(λτ∗e +1)]/2i appear because of the temporal variations in Q. γ and β are the real
and imaginary parts of the effective complex coupling constant Γe = Γ/η, and τe = τ/η is the
effective complex PR time constant.

The formal solution of Eq. (9) is given by a(L) = F(L)a(0), where F(z) = exp(Az) is the
linear flow matrix. The instability is determined by both the eigenvalues ofA and the boundary
conditions. Taking into account two-point boundary conditions, F is converted to a scattering
matrix S, and we obtain the final form of the solution:

a(zout) = S(K,λ) a(zin) , (11)

where zout and zin are the output and the input faces of the crystal for the respective beams. The
poles of the scattering matrix determine the nature and dynamics of an instability. In our case, the
poles of S are found from the vanishing determinant of a 2×2 submatrix of F , i.e. det(F22) = 0.
This condition gives the dispersion relation for a system of two counterpropagating light beams
in a sluggish and non-local PR medium [13]:

cosh(
γ − g

2
)+ cos(χ1) cos(χ2)+ p sinc(χ1) sinc(χ2) = 0 , (12)

where χ2
1 = f K2( f K2+β)−γ2/4, χ2

2(λ) = f K2( f K2+ h)− g2/4, and p(λ) = f K2[ f K2+ (β+
h)/2]+βh/2+γg/4. Thus the stability analysis of a spatially extended system results in growth
ratesσ = <(λ) for the transverse modes K, together with their oscillation frequencies Ω = =(λ).
The instability threshold is inferred from the lowest lying branches of the marginal stability
condition of the most unstable mode: σmax(K; Γ0, E0) = 0 (Fig. 2). As long as |E0| is small there
is a region of stability for any transverse mode. The polarity of the external field determines the
self-focusing properties of the medium. In the case of self-defocusing non-linearity (E0 > 0), we
encounter so-called high-K-instability that can either be due to the effects of linearizing the model
equations or due to the model itself, and needs further investigation. In the case of self-focusing
non-linearity (E0 < 0), a finite band of transverse modes around the critical mode f K2

c ≈ 3.6 is
predicted to become unstable through a Hopf bifurcation at the critical value Ec

0 ≈ −1.7, with
a characteristic oscillation frequency Ωcτ ≈ 0.031. The region where the instability balloon is
displayed in Fig. 2 corresponds to a static instability. Its threshold, though, is always higher than
that of the dynamic instability, and therefore is not observable. In addition, the slow medium
response leads to plane-wave instabilities ( f K2 = 0) whose threshold is much higher than that
for modal instabilities.
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Fig. 2. (a) Threshold curves and (b) threshold frequency as functions of the transverse wave vector K . The solid
curves are for E0 < 0; dashed curves for E0 > 0. “sFP” and “uFP” denote the regions of stable and unstable fixed
points, respectively. “Hopf” and “S-N” (saddle node) indicate the nature of the bifurcation as the threshold curve is

crossed in the direction of arrows.

3.2. Spontaneous transverse intensity modulation

For a self-focusing non-linearity linear stability analysis predicts the occurrence of transverse
patterns above a primary threshold. In order to see what structures arise, we investigate the
counterpropagating 2WM process by numerical simulation. In this and the subsequent sections
we keep the following parameters constant

Γ0 = 2.0 , r0 = 20.09 , f = 2.5 · 10−2 , α = 0 .

The strength of the external field E0 is our bifurcation parameter.
In our numerical simulations we find the threshold field strength to be somewhat higher

(Ec
0 ≈ −1.9) than predicted, because the transverse modes were considered infinitely extended

while performing stability analysis, whereas we deal with finite Gaussian beam profiles in our
simulations. This may lead to discrepancies, but the approximation is good as long as the
wavelength of modulation remains small enough compared to the beam waist. In Fig. 3 the
transverse intensity profiles at the output faces of the crystal are shown at two subsequent times
that are half an oscillation cycle apart, when the beam center either goes through its maximal
or its minimal intensity.

Below threshold (Fig. 3a) we find the fixed point to be an attractor with a smooth Gaussian
beam profile. Slightly above threshold (Fig. 3b) a spontaneous modulation of the beam profile
appears. This modulation oscillates in time, and we find a limit cycle as an attractor. Its frequency,
as well as the spatial frequency of the transverse modulation agree well with the values predicted
by stability analysis.

With increasing field strength the amplitude of modulation increases until the beam center
of I1 drops and two regions of high intensity appear at the edges of the beam profile, whereas
the center of beam I2 steepens noticeably. These effects are due to beam focusing biased by the
modulational instability in this 2WM geometry. Above threshold, along with the modulation
of beam profiles an inhomogeneity in the refractive index emerges in the transverse dimension.
The beams become focussed into the regions of high refractive index. This focusing is a dynamic
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Fig. 3. Transverse intensity profiles for different E0 in the self-focusing case: (a) −1.8, (b) −2.0, (c) −2.2, (d) −2.6.

process, because the index grating is a running grating.
If the transverse modulation in the beam intensity is plotted in time, as it is done for I1(z =

L) in Fig. 4a, we recognize that it is not a standing, but a moving pattern. The transverse
modulations seem to originate in the beam center, and a left-going and a right-going modulation
runs across the beam profile, till either one disappears at the edges. Such spatio-temporal patterns
are known as the running transverse waves [14]. This pattern occurs in the optical near field. Here
it posesses a characteristic spatial length scale given by the critical wavelength Λc = 2π/Kc,
which is in analogy to the well known roll pattern in one transverse dimension. In the far field
these transverse patterns appear as two wandering spots (Fig. 4b) under a characteristic angle
θc ≈ Kc/kz with respect to the direction of propagation z. They emerge as a pair of faint spots,
become brighter while they move inward, and finally they fade away, and another pair begins
to emerge.

In two transverse dimensions it is expected that the spots form patterns which appear as
hexagonal or square lattices, depending on pattern selection criteria such as symmetries and
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(a) (b)

Fig. 4. Spatio-temporal dynamics of the intensity of the pump beam I1 in one transverse dimension x slightly above
the threshold at E0 = −2.0: (a) Running transverse waves in the near field, corresponding to Fig. 3b, and (b) the

corresponding wandering spots in the far field (here the pump beam is subtracted).

Fig. 5. Spectra of normalized eigenvalues λ(i) (in percent) for the intensity patterns of I1 and I2 with E0 = −2.0.

boundary conditions. This has recently been seen in many experimental arrangements [5,15,16],
where two counterpropagating optical beams have led to the spontaneous destabilization of the
pump beams and thus to the spontaneous formation of transverse spatial patterns.

3.3. Eigenmode analysis of running transverse waves

In order to quantitatively characterize the spatial structures and their dynamics, we apply
the singular value decomposition (SVD), also known as the Karhunen–Loève decomposition
[14]. SVD was originally developed for the task of pattern recognition, but has generally proven
powerful tool in determining and distinguishing different spatio-temporal degrees of freedom,
which are most often hard to detect by visual inspection. By computing and analyzing the basic
eigenmodes, we obtain a better insight into the mechanisms leading to complex spatio-temporal
dynamics.

The procedure for SVD in principle performs a reduction of an intensity pattern I(x, t) to its
time averaged and its modulated parts. The intensity modulated partδI(x, t) = I(x, t)−〈I(x, t)〉T
is decomposed according to Karhunen and Loève into an orthogonal set of eigenmodes p(i)(x)
and their time dependent expansion coefficients a(i)(t) [14]:

I(x, t) = 〈I(x, t)〉T +
∑

i

a(i)(t)p(i)(x) . (13)

The eigenvalues λ(i) determine the probability of occurrence of the corresponding eigenvectors
p(i) in the intensity pattern I(x, t). Figure 5 exhibits the spectra of the normalized eigenvalues
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Fig. 6. Two dominating eigenmodes (middle column), their time dependent expansion coefficients (right column) and
the corresponding substructures (left column) of the running transverse waves of Fig. 4a.

λ(i) for the intensity pattern of the running transverse waves in Fig. 4a. The eigenvalues decrease
rapidly with increasing i. The two largest eigenmodes contain more than 99% of the original
spatio-temporal information. Note that, as far as the order of magnitude is concerned, the
eigenvalues are arranged in pairs.

In Fig. 6 the transverse dependence of two dominating eigenmodes, the time-series of expan-
sion coefficients and the resulting spatio-temporal substructures δI (i)(x, t) are shown. Such a
substructure by itself represents a standing transverse wave. The first eigenmode p(1) consists of
a finite wavepacket with a basic spatial frequency K0 and a temporal frequency Ω0. The Fourier
spectrum of the second eigenmode p(2) reveals that it contains the same temporal frequency Ω0

and two basic spatial frequencies K1 = K0 − ∆K and K2 = K0 + ∆K that are separated by a
frequency gap of 2∆K. Both the transverse spatial structure as well as the temporal evolution of
these two eigenmodes are shifted by π/2 relative to each other. This phase-shift allows the two
standing wave patterns to combine to a running transverse wave. K0 agrees well with the char-
acteristic frequency Kc predicted by linear stability analysis and thus represents the transverse
modulation due to the spontaneous destabilization of the homogeneous fixed-point solution.
The occurrence of another frequency ∆K indicates a secondary bifurcation, which happens im-
mediately after the primary bifurcation, and which we presume originates from the finite trans-
verse Gaussian beam profile. In particular, it is responsible for the coexistence of a right-going
and a left-going transverse wave, and the conservation of transverse symmetry with respect to
the beam center.

4. THE UNIDIRECTIONAL RING RESONATOR

In the case of the unidirectional ring resonator one beam is fed back into the crystal and the
input beams are given by:
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A1(x, z = 0) =C1 exp(−x2/w2
0) , A2(x, z = 0) = R exp(ik0L)FSP[A2(x, z = L)] . (14)

where C1 is the amplitude of the Gaussian pump beam incident upon the crystal and R is the
overall reflectivity of the mirrors comprising the resonator. The term k0L is the total propagation
phase in free space

k0L = 2Mπ + Ψext , (15)

with −π ≤ Ψext ≤ π being the detuning of the external resonator. M is an integer number
enumerating longitudinal modes. We pick Ψext as the bifurcation parameter.

The free space propagator FSP is defined through [17]:

FSP[A2] = FT−1(FT(A2) · exp(i f K2L)) , (16)

where FT (FT−1) denotes the Fourier (the inverse Fourier) transform. In addition to the detuning
of the resonator, there exists a detuning of the frequencies of waves relative to each other, δν =
ν1 − ν2. For small values of δν ≈ 1− 10 Hz we may assume that both waves are subject to the
same coupling constant Γ0, although it needs to be modified to account for the build-up of a
running grating:

Γ = Γ0
1+ 2πiδν τ

. (17)

Here Γ0 is the PR coupling strength of the frequency degenerate wave mixing as it was introduced
in Section 3. No external field is applied to the crystal in this configuration.

4.1. Transverse mode-like structures

Under the influence of diffraction within the medium one expects that different patterns arise
in the transverse plane of the signal beam. Within the ring resonator there are no diffraction
limiting apertures, nor curved mirrors. In an empty resonator there exist an infinite number of
transverse modes. Which of these structures spontaneously emerge, and what their temporal
evolution looks like, will be investigated here.

Without frequency detuning (δν = 0) one exclusively finds stationary solutions of the intra-
cavity intensity for any value of Γ0 and Ψext. The intensity of the signal beam I20 = I2(z = 0)
attains a constant value, while the phase oscillates with a frequency Ω. The beam profiles in
the transverse dimension remain Gaussian. In the subsequent discussion we take the following
parameters

Γ0 = 2.0 , R = 0.9 , f = 3 · 10−4 , α = 0.1 .

When a frequency detuning δν = −0.47 (in units of τ−1) is present and the cavity detuning
is in the range of −0.05π ≤ Ψext ≤ 0.092π, the situation is similar to the case δν = 0 and
we observe a stationary Gaussian intensity profile. This structure is labelled “state 1” in Fig.
7a. It becomes different if we further increase Ψext. Three additional transverse structures are
observed, which we label “states 2̄, 3 and 4̄” (Figs. 7b–d). Their intensities I20 are still stationary.
For Ψext = 0.094π one observes a transverse beam profile consisting of two symmetric spots
resembling a Gauss–Hermite mode of the first order (Fig. 7b). For the states 3 and 4̄ a bump
and a dip emerges in between the symmetric spots.

Although I20 is constant in time, the frequency detuning results in an oscillation of the phases,
similar to the one observed in the plane-wave limit. Fig. 8 displays the spatio-temporal dynamics
of the real part of A20 for all four states. The oscillation frequency Ω is different for each state,
and increases with increasing Ψext. In Figs. 8b,d the real parts of the fields reveal an asymmetry
with respect to the beam center, and therefore are labelled as “states 2̄ and 4̄”. Their imaginary
parts, of course, show identical but 90 degrees phase shifted oscillations.
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Fig. 7. Beam profiles of the signal beam I20 = I2 (x, z = 0). (a) State 1 (Ψext = 0.091π), (b) state 2̄ (Ψext = 0.094π),
(c) state 3 (Ψext = 0.097π), and (d) state 4̄ (Ψext = 0.1π).

Fig. 8. Spatio-temporal dynamics of <(A20). The simulations correspond to the stationary states shown in Fig. 7.

Despite the fact that there are no specific criteria prescribed for the selection of transverse
modes in this resonator geometry, we observe low order Gauss-Hermite mode structures known
from resonators with curved mirrors, as well as an alternating occurrence of symmetric and
antisymmetric real and imaginary parts of the field I20 with higher mode index. They all arise
spontaneously.

In a laser with curved mirrors the Gauss–Hermite modes become resonant when the atomic
transition frequency and/or the resonator detuning is varied [18]. In analogy, one might have
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Ψext / π
0.09 0.10.095

2 431

P1 P2C1 C2

P1, P2

C1, C2

1, 2, 3, 4 stationary states

periodic oscillations

chaotic oscillations

Fig. 9. Schematic representation of different spatio–temporal states by variation of the cavity detuning Ψext. The bar
denotes spatially antisymmetric states.

Fig. 10. Spatio-temporal dynamics of the periodic oscillation P1. (a) I20 and (b) <(A20).

a similar understanding of the occurrence of stationary structures observed in this system.
Variation of Ψext changes the oscillation frequency Ω of the signal beam, hence a resonance
appears with the oscillation frequencies of different transverse mode-like structures, i.e. the
frequency Ω that is supported by the resonator lies within the gain line of one of the four
stationary states. This state is favoured and the others are suppressed.

4.2. Regular and irregular mode oscillations

Besides the occurrence of stationary transverse mode-like structures, we observe regular and
irregular spatio-temporal dynamics depending on the value of Ψext in between the stationary
states. A schematic overview of the bifurcation behaviour is shown in Fig. 9. Increasing Ψext

beyond the state 2̄, a chaotic oscillation (C1) followed by a periodic oscillation (P1) occurs.
In between the symmetric state 3 and the antisymmetric state 4̄, a spatially antisymmetric and
temporally chaotic state C̄2, as well as a periodic state P̄2 occur.

These periodic and chaotic states seem to be the superposition of two, not necessarily neigh-
bouring, stationary states. In order to see this we have plotted the spatio-temporal dynamics of
the periodic state P1 in Fig. 10. In the intensity I20 two latteral spots oscillate synchronously and
alternatingly with a faint central spot. In the real part of A20 one sees two oscillating patterns: a
pattern from the state 3, as in Fig. 8c, which is superimposed on the pattern from state 1, as in
Fig. 8a. The power spectrum of state P1 (Fig. 11) reveals two dominant frequency lines, which
approximately coincide with the frequencies Ω1 and Ω3 of the herein involved stationary state
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Fig. 11. Power spectrum (arbitrary units) of the periodic oscillation P1 of Fig. 10. The spectrum is calculated for
the complex electric field A20(x = −0.74, t) and the frequency Ω is given in units of 1/τ. Dashed lines represent the
frequencies of the stationary oscillation of the state 1 (Ω = −0.0053) and of the state 3 (Ω = −0.018), respectively.

Fig. 12. Spatio-temporal dynamics of the chaotic oscillation C̄2. (a) I20 and (b) <(A20).

patterns 1 and 3. Other frequency lines in the spectrum are higher harmonics of the frequency
difference Ω1−Ω3. This regular mode oscillation can therefore be understood as a phenomenon
called mode-beat.

Similar behaviour holds for the chaotic state C̄2. It is an antisymmetric state, as antisymmetric
beating dominates the pattern. The intensity pattern consists of two spots which alternatingly
oscillate asynchronously and synchronously (Fig. 12). In the power spectrum (Fig. 13) broadband
continuous spectrum dominates, with a few frequency lines visible, coinciding approximately
with the frequencies Ω2 and Ω4, and some harmonics of the frequency difference.

4.3. Complex eigenmode analysis of mode oscillations

By means of the eigenmode analysis discussed in Section 3.3, one obtains information about
the spatio-temporal behaviour of involved substructures. Moreover, an eigenmode analysis of the
complex field amplitudes provides information on the symmetry of the substructural patterns
[19], which in our case are the symmetric and antisymmetric mode-like structures.

In Fig. 14. 14 the real and imaginary part (left column) and the intensity (right column) of
the four largest eigenmodes p(i)(x) of the chaotic state C̄2 are displayed. The first and third
eigenmodes correspond to an antisymmetric, and the second and forth eigenmode to a symmetric
substructure. The intensities are represented again by two spots. The sum of the eigenvalues λ(i)
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Fig. 13. Power spectrum (arbitrary units) of the chaotic oscillation C̄2 of Fig. 12. The spectrum is calculated for the
complex electric field A20(x = −0.74, t), and the frequency Ω is given in units of 1/τ.

Fig. 14. Complex eigenmodes of the chaotic oscillation C̄2 of Fig. 12. Left: real- and imaginary parts of the eigenmodes
p(i)(x). Right: the corresponding moduli |p(i)|2.
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Fig. 15. Time expansion coefficients |a(i)|2 of the complex eigenmodes of Fig. 14.

of these four eigenmodes is larger than 95%, so they contain most of the essential information
of the structure. The higher eigenmodes contribute small corrections.

The irregular temporal evolution of the eigenmodes (|a(i)(t)|2) explains the dynamics of C̄2
(Fig. 15). The coefficient |a(1)(t)|2 represents a periodic (laminar) oscillation in different time
intervals, displaying synchronous oscillation of the spots (see Fig. 12). Within such laminar
intervals the amplitude of oscillation increases, becomes irregular and finally collapses. At that
moment |a(2)(t)|2 emerges, and lasts until another laminar interval of |a(1)(t)|2 sets in. |a(3)(t)|2
shows an irregular temporal behaviour, however the signal |a(4)(t)|2 is nearly synchronized with
the sequence of bursts of |a(2)(t)|2. Hence, this eigenmode analysis again justifies the notion of
C̄2 as being an antisymmetric state.

Such a dynamical behaviour points towards a process termed crisis-induced intermittency [20],
which here is due to a boundary crisis. In the boundary crisis there exists a heteroclinic tangency
between two unstable solutions. For different time intervals the system oscillates in the basin
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of an unstable solution, represented in this case by p(1). Following the heteroclinic tangential
orbit, the system comes close to the basin of another unstable orbit (here p(2)) and stays there
for some time, before reaching again the basin of attraction of the first orbit, and so on, with a
temporally irregular repetition.

In order to identify this type of bifurcation as crisis-induced intermittency, it is necessary to
investigate the dependence of the mean length < l > of intervals with vanishing spatial symmetry
breaking on the bifurcation parameter Ψext. This, however, would require much longer time series
than the ones shown here. Even in the present form numerical simulations require a massive
computational support.

5. CONCLUSIONS

Two different two-wave mixing configurations have theoretically been investigated with respect
to their spatio-temporal dynamics in one transverse dimension.

In the case of counterpropagating two-wave mixing, a linear stability analysis has been per-
formed, predicting the onset of spontaneous destabilization of the homogeneous steady-state
solution. We found that an externally applied electric field always results in dynamic instabili-
ties via Hopf-bifurcation, due to the removal of frequency degeneracy in the two-wave mixing
process. Above the primary instability threshold, in our numerical simulations we observed the
occurrence of running transverse waves in the optical near field, and wandering spots in the
far field. The temporal frequency of the limit cycle oscillation, as well as the spatial frequency
of the transverse modulation agree well with the values predicted by stability analysis. Above
the threshold, refractive index inhomogeneities cause transverse focusing effects. An eigenmode
analysis revealed the running transverse waves as the secondary instabilities.

In the case of the unidirectional ring oscillator, the occurrence of four different transverse
structures similar to Gauss-Hermite modes have been observed, depending on the resonator
detuning. These structures either possess symmetric or antisymmetric field distributions. Regular
and irregular mode oscillations are found, which are shown to be a dynamic superposition of
two mode-like structures. Such superposition results in the appearance of two wandering spots
in the intracavity field (with or without an accompanying central peak) which perform periodic
and aperiodic motion. A complex eigenmode analysis allows us to determine the symmetry of
the complex spatial field modes. As far as the spatio-temporal dynamics is concerned, appart
from periodic mode beatings, a heteroclinic tangency between a symmetric and an antisymmetric
mode oscillation is observed, leading to spatio-temporal chaos. The temporal evolution displays
the characteristic behaviour of crisis-induced intermittency. Our numerical simulations are in
general qualitative agreement with experimental results [3,4,21], where also superpositions of a
few low order Gauss-Hermite or Gauss-Laguerre mode-like structures are found to dominate
the spatio-temporal dynamics of the intracavity field.

We plan to extend the simulations to two transverse dimensions, which we have already done
for four-wave mixing geometries in optical phase conjugation [14,22]. In Ref. [22] the spatio-
temporal dynamics of a bidirectional ring oscillator, which is governed by a four-wave mixing
process, has numerically been investigated.
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