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1. Introduction

Optical solitons in fiber Bragg gratings (FBs) have attracted considerable attention since its first appearance about a couple of
decades ago [1-20] The majority of the reported results in this context are from numerical perspective. Very recently, analytical
results from this avenue have started pouring in [17-19] These results are with very limited forms of nonlinear refractive index. To
enumerate, it is Kerr law, parabolic law, quadratic—cubic law, polynomial law and parabolic-nonlocal combo nonlinearity where
substantial results with BGs have been reported. The current paper exhibits, for the first time, exact soliton solutions in fibers BGs that
comes with generalized anti-cubic (AC) form of nonlinear refractive index. There are three values of the nonlinearity parameter as
deemed permissible according to its domain of validity. The extended auxiliary equation approach first retrieves the solutions for the
three models in terms of Jacobi’s elliptic functions. Subsequently, in the limiting situation, when the modulus of ellipticity ap-
proaches zero or unity, it is the soliton solutions that emerge from the scheme. The details are outlined in subsequent sections after
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the three models are pen-pictured in the following subsection.
1.1. Governing model

The governing generalized AC nonlinearity is structured as [8,9,20,31-34]

1

. b
ig; + aq,, + (lqlz—nﬂ + by lgP" + bs |(I|2"+2)q =0,

@
with i = </=1. Here, q(x, t) is the complex-valued function that represent pulses transmitting across the fibers. In Eq. (1), the first
term is the linear temporal evolution, while the coefficient a represents chromatic dispersion (CD) and the constant coefficients b; for
Jj =1, 2, 3 give self-phase modulation (SPM). Also, n is the power-law nonlinearity parameter such that — 1 < n < 3 [8]. The fol-
lowing subsections will introduce generalized AC nonlinearity in fiber BGs with three cases at n = 0, n = 1 and n = 2 where details
are displayed.

1.1.1. Case-I (n =0)
For optical fibers with differential group delay, generalized AC splits into two components with BGs at n = 0. Thus, the vector-
coupled model reads

. fiu )
iU + o + ————— + diu + & uP + n WPu + iquy + Bv =0,
by [ul? + ¢ v 2
and
iV + Gl + # + dov + (& VP + 0, [uP)v + gy + Bu =0,
by v + ¢y uf? 3

where a;, fi, by, ¢, di, &, m, o and B; for | = 1, 2 are constants. The independent variables x and t represent spatial and temporal
variables, respectively and the dependent variables u(x, t) and v(x, t) are wave profiles along the two components. The coefficients a;
represent dispersive reflectivity, while the coefficient f; represents the combination of SPM and cross phase modulation effects (XPM).
The coefficients b;, d; and & give SPM and the coefficients ¢; and ; are XPM. Next, the coefficient a; are from inter-modal dispersion
and finally, f3; accounts for detuning.

1.1.2. Case-Il (n = 1)
For n = 1, generalized AC splits into two components so that the vector-coupled model reads:

fiu

iU, + apvg + + & P + 5, vPu + 6 lul* + y PP + 8 vHu + ioqu, + B,v =0,
R e e e+ d T G i <A )
and
iV + Gl + v f22v > + E WP+ 0, uP)v + (62 v1* + B IVPUP + & ul*)v + i, + Bu =0,
by WI* + ca WP ul + dy ul* (5)

where a;, fi, by, ¢, di, &, m, 61, Y1, 61, ap and f; for [ = 1, 2 are constants. The coefficients b;, & and 6; are from SPM and the
coefficients ¢;, d;, n; and §; are associated with XPM.

1.1.3. Case-1II (n =2)
For BGs with n = 2, the vector-coupled NLDSE with generalized AC nonlinearity is casted as:

. fiu
i + Ve + + (61 lul* + ¥ PP + & v*)u
bylul® + cyul*vP + dy [uPpl* + e vl
+ (& Ul + o [ulf P+ uPl + 9, vOu + icu, + By =0, 6)
and
W + Gl + - . 2f2v — =+ @ VI* + p WP IuP + 6 [ul*)v
by v + o PI*[ul + dy VP [ul* + e |ul
+ G+ g Ul + n VP ul* + 9, ul®)v + iy + Bu =0, @

where a;, fi, by, ¢, di, e, 01, vi, 61, &, 01, 11, 1, apand f3; for I = 1, 2 are constants. Here, the coefficients f;, c;, y;, 0; and r; collectively
represent SPM and XPM. The constants b;, 6; and & come from SPM and d;, e;, §; and 7; emanate from XPM.

The objective of this paper is to construct solutions to the above coupled systems in terms of Jacobi’s elliptic functions. In the
limiting case of the modulus of ellipticity, optical solitons and other solutions will emerge. To our best knowledge, the above coupled
systems were not reported elsewhere, thus far.

This paper is structured as follows: In Sections 2, 3 and 4, the extended auxiliary equation method is implemented for the three
cases of generalized AC nonlinearity applicable to fiber BGs. A wide range of solutions in terms of Jacobi’s elliptic functions are
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enumerated. Subsequently, solitons and other solutions, that emerge from the limiting process are presented.
2. Mathematical analysis: Case-I (n = 0)

For the exact soliton solutions of the coupled system Egs. (2) and (3), we introduce the transformation:
u(x, 1) = ¢, (§explin(x, N,
v(x, 1) = @,(©explin(x, D], ©)
and
E=x—ut, n(x, t) = —kx + wt + 6y, )

where v, k, w and 6, are all non zero constants to be determined which represent velocity of soliton, frequency of soliton, wave
number and phase constant, respectively, while (&), @2(&) and 7(x, t) are real functions. Substituting Eq. (8) and (9) into the system
Eq. (2) and (3), separating the real and the imaginary parts of the system Eq. (2) and (3), we have:

Lo 2 2
o) — (@ —d = ka)p, — (@k* = B, + ———— + &’ + me)e, =0,
1% 1 1/%1 1 1/%2 b1§012+c1(022 171 1¥2/%1 (10)
ae) — (0 — dy — kap)p, — (@k* = B, + % + &0 + D)9, =0,
byp; + 29 (11)
and
v — a)p, + 2akp, = 0, 12)
2a,kp, + (v — ), = 0. 13)
Setting
#,(8) = Lo, (§), a4
where A; is a non zero constant, such that A; = 1. Consequently, Eqgs. (10)-(13) reduce to
h
ahe! — [w —di — kay + L (a k? — +— 4+ A2 3 =0,
e — [ 1 1 1 (@ BDle, (b, + 3-1201)@1 & A as)
6 = [h(w = d — kap) + a:k* — B, + # + M@A7E + 0ol =0,
Aiby + o, (16)
and
('U -+ 2a1k/11)§01' =0, a7rn
[2a:k + 41 (v — )] = 0. (18)

From Egs. (17) and (18), one can obtain the velocity of the soliton as
v =0 — 2a;kAy, (19)
and

_ 0{le - 2(12k

A (20)
From Egs. (19) and (20), we have the constraint condition:
2a1k/112 + (Olz - O(l)/h - 2a2k =0. (21)

From (21), we have

_ —(sz - al) + \/(sz — al)z + 16(1102]{2

ﬂ,l = 5
4a,k (22)
provided a;as > 0. Egs. (15) and (16) have the same form under the constraint conditions:
ah = a, (23)
& + ') = h@ALE + 1), (24)
FGA7by + ¢) = Afy (by + Afcy), (25)
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[w—dy — ke + h(a1k* = B)] = [ (w — dy — ko) + ak? — B,]. (26)
Eq. (15) can be rewritten in the form:
P19 + 1 — P9 + P39y =0, 27)
where
h [w—di — kety + 4 (ak? — B)] & + Afny)
Tk + A2y T ak BT (28)

provided a4, (b; + A{c;) # 0. Balancing [44-58] ¢, ©)e," (€) with (pf‘(é’) in Eq. (27)yields N = 1. In the next subsection, we solve
Eq. (27) using the proposed method.

2.1. Extended auxiliary equation

According to this method [19,20], we assume that Eq. (27) has the formal solution:
(&) = Ag + AF(§) + A F2(§), (29)

where Ay, A; and A, are constants to be determined, such that A, = 0, while the function F(¢) satisfies the following first order
equation:

F?(§) = co + &F2() + caF*(€) + csFO(9), (30)

where ¢;(j = 0, 2, 4, 6) are constants to be determined. It is well known that Eq. (30) has the following solution:

1

1 Cy 2
F() = *[—f(l + f( ))] ,
H=7 o ¢ (31)
where f(£) could be expressed through the Jacobi elliptic functions sn(§, m), cn(§, m), dn(§, m) and so on. Here 0 <m < 1 is the
modulus of the Jacobi elliptic functions. Substituting Eq. (29) along with Eq. (30) into Eq. (27), collecting the coefficients of each
power FOEFE®Y,(i=0,1,2,.8, Jj =0, 1), and setting these coefficients to zero, we have a set of algebraic equations which can be
solved by the aid of Maple to obtain the following results:

Ao(AGps — py) 3 1 1 1
—T, = _EAO2103 + sz’ Cy = —EAoAng, Ce = —§A22.03,

Ao =Ag, A =0,4 =4,p, =0,p, =0,, 03 = 5. (32)

Cyp =

From Egs. (29), (31) and (32), then we have the solutions:

P, (§) = x4, f(©). (33
The coupled system (2) and ((3) has the following families of solutions:
. cd(m?—1) ci(5m? — 1) R .
Family-1: If ¢, = 5 ,C = , ¢6 > 0, then the coupled system Egs. (2) and (3) has the Jacobi elliptic functions
32¢c¢m? 16¢c5m?
solutions:
| 2mPp, 2 -
ulx, t) =+ [——=— sn| |-—=2— (x — vt), m [elhrrerd), vix, t) = hu(x, t)
(m? 4+ 1)p, (m?> + 1) (34)
or
2, [ .
ulx, t) = + 2# ns \/_Zp# (x — vt), m |elherettd) v(x, t) = Lhu(x, t)
(m? + Dp, (m?* +1) (35)

provided p, < 0 and p3 < 0. In particular, if m — 17, then we have the dark soliton solutions:

ulx, t) = i\/& tanh[ —% (x — ut)]ei(“”‘*‘””s), v(x, t) = Lhu(x, t)
0

3 (36)
and the singular soliton solutions:
_. [P P i(—kxtat+6) -
ulx, t) = i\/— coth| |—== (x —vt) |e s v(x, t) = Au(x, t)
P3 2 (37)
while if m — 0%, then we have the periodic solutions:
2 .
ulx, t) = i\/ﬁ csc[/=p, (x — vr)]elhxtat+d) vix, t) = Lu(x, t).
P3 (38)
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. 21— m?) ci(5 — m?) R .
Family-2: If ¢y = 2 c, = 16 , C6 > 0, then the coupled system Egs. (2) and (3) has the same Jacobi elliptic functions
Cé Co
solutions (34)-(35).
. el cZ(4m? + 1) o .
Family-3: If ¢y = 5, € = , €6 < 0, then the coupled system Egs. (2) and (3) has the Jacobi elliptic functions
32m2c¢ 16cem?
solutions:
2
ulx, t) = s \/ 2 — ot), m |el(-hetet+d) v(x, t) = Lu(x, t)
(em? — 1)p3 (2 (39)
or
2 2 |~ y—
2 1-— ;
ulx, t) = + ~ (2 P sd \/ fz (x — vt), m |ei-hkx+ertd) v(x, t) = hulx, t)
@m? - 1)p, em? - 1) (40)
provided p,(2m? — 1) > 0 and ps > 0. In particular, if m — 17, then we have the bright soliton solutions:
2 .
ulx, t) =+ ﬁsech[@ (x — vt)]elhetar+d) vix, t) = Lu(x, t)
P3 41)

provided p, > 0 and ps > 0.
c;m? _j(5m - 4)

Family-4: If ¢, = , G =
y T 302mr - 1) © 16cs(m® — 1)

, €6 < 0, then the coupled system Egs. (2) and (3) has the Jacobi elliptic

functions solutions:

2, .
ulx, t) = + P22 dn P2 = (x — vt), m |eihrraito), v(x, t) = Lu(x, t)
2 — m?)p, 2-m? (42)
or
20 — m?)p, ;
ue, 0= 20, \/ o), m [0,y 1) = A, 1)
Q-m )p3 @- (43)
provided p, > 0 and p3 > 0.In particular, if m — 1-, then we have the same bright soliton solutions Eq. (41).
c} c2(4m? - 5)
Family-5: If ¢, = 4 — , ¢ > 0, then the coupled system Egs. (2) and (3) has the Jacobi elliptic
y T R2A-m) T Tecmr— 1) plec sy as. (2) and (3) P
functions solutions:
2(1 — m? .
ue, 0 = £ [~ T | 2 (x - v, m [eficheranso), Ve ) = AU, )
em?— Do, |\ @ - 1) (44)
or
2p, Py i
ulx, t) = ds (x — vt), m |elherorto) v(x, t) = hulx, t)
Cem? - 1)p, [ m? - 1) ' (45)
provided (2m? — 1)p, > 0 and p3 < 0. If m — 1", then we have the singular soliton solutions:
ulx, t) =+ [— 20 csch[ /o, (x — vf)Jei(hketai+o), v(x, t) = Lhu(x, t)
' o (46)

provided p, > 0 and p3 < 0, where if m — 0%, then we have the same periodic solutions Eq. (38) as well as the periodic solutions:

20, (-
ux, t) = + | =2 sec[ /=p, (x — vt)]elhx+wt+d) v(x, t) = Lulx, t)
\ o P2 ' 47)

provided p, < 0 and p3 < 0.
c cZ(4m? — 5)
2 e 2= 2
32¢5 (1 — m?) 16¢cs(m? — 1)
functions solutions (42) and (43).

Family-6: If ¢, =

, Cg > 0, then the coupled system (2) and (3) has the same Jacobi elliptic

3. Mathematical analysis: Case-II (n = 1)

To this aim, we make the same transforms Eqs. (8) and (9). Substituting Eqs. (8) and (9) into the system Egs. (4) and (5),
separating the real and the imaginary parts of the system Egs. (4) and (5), we have:

617



E.M.E. Zayed, et al.

he
bip! + aple; + dip,

+ (619 + nele; + 819)p, = 0,

a9) — (@ — ka)p, + (B, — ak?)p, + + el + me)e

Lo,
bo) + 0ol + do)
+ 620, + ner e’ + 6000, =0,

ae! — (@ — ka)p, + (B, — mk?)ep, + + &7 + D)o,

and
(v — a)e, + 2a1kp, = 0,
2akp, + (v — @)p, = 0.
Setting

?,(5) = Loy (D),

where A is a non zero constant, such that A, = 1. Consequently, Egs. (48)-(51) reduce to

A
(by + Ajer + A3 d) g}

+ 61+ 3n + 218)9’ =0,

ahe! — [w — kay — LB, — ak?) e, + + (& + in)e]

&,
(A3 + A7 + dz)@f

+ 12(12462 + AZZyZ + 52)@15 =0,

09! — (e — kay) = (B, — @k?)g, + +LA3G + 19

and
[v — o + 2a1kA] @] = 0,
[2a:k + (v — a)]g] = 0.
From Egs. (55) and (56), one can obtain the velocity of the soliton as
v =0 — 2a1kA,
and
_ wh — 2m,k
A
From Egs. (57) and (58), we have the constraint condition:
2a kA + (0 — o)Ay — 2a,k = 0.

From Eg. (59), we have

_ —(“2 - ocl) + \/(az - a1)2 + 16a1a2k2

A
2 4a1 k

5

provided a;a, > 0. Egs. (53) and (54) have the same form under the constraint conditions:

mh = a,

& +A5n) = A6, + 1),

61 + A3y + 176 = L4510, + A3y, + 8)).

[ QA4bs + A + &) = Lf,(by + Afcr + A3 dy),

[w — key — (B, — mkD] = [h(w — ko) — (B, — axk?)].
Eq. (53) can be rewritten in the form:

3.n

Pro + 1y — o) + el + e =0,

where
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(55)

(56)
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_ hi _ [w — kay — L (B, — a1k?)]
T ak by + e+ Addy 2T a ’
G+ (Bl + Ady + A6
T al Ha = ad ’ (67)

provided a;4,(b; + A5¢; + A7 dy) # 0. Balancing ¢ (§)e;" (¢) with ¢18 (&) in Eq. (66) yields N = % Setting

.16 = H:(®), (68)
where H(¢) is a new function of &, we get the new equation

H'? — 2HH" — 4u, + 4u,H? — 4u,H3 — 4u, H* = 0, (69)
Balancing [44-58] H(&)H”(¢) with H*® in Eq. (69) yields N = 1. In the next subsection, we solve Eq. (69) using the proposed

method.

3.1. Extended auxiliary equation

According to this method, we assume that Eq. (69) has the formal solution:
H () = Ag + AF (&) + A F2(§), (70)

where Ay, A; and A, are constants to be determined, such that A, = 0, while the function F(¢) satisfies the first order Eq. (30).
Substituting (70) along with Eq. (30) into Eq. (69), collecting the coefficients of each power P‘i(é)(F’(f))f, i=0,1,2,.8, j=0,1),
and setting these coefficients to zero, we have a set of algebraic equations which can be solved by the aid of Maple to obtain the
following results:

_AO(A02M4 + AO/"g, - :uz) ¢

3 4 1
Co = 2= —2U,AG — EAollg + Wy, €4 = —EA0A2M4 - 5142#3,

Ay
1
ce = _EAZZM’ Ag =Ag, AL =0, 4 =Ay, ty =0, fly = Uy, Py = Uy, My = Hy. 71)
From Egs. (31), (68), (70) and (71), then we have the solutions:
1
3u 3u 2
p@)=1-"2=+ [Ao + 73} f&p -
8ty 81y (72)

The coupled system (4) and ((5) has the following families of solutions:

30m2 _ 1 2 2 1
Family-1: If ¢y = G (mz ), Y = ¢ (5m ), ce > 0, then the coupled system (4) and ((5) has the Jacobi elliptic functions
32c¢m? 16cem?
solutions:
1
3 [ 32 ?
ulx, t) = + e B +sn|, |- i (x—ot),m el(hxtawt+6) v(x, t) = Lu(x, t)
8uy 16m’u,
(73)
or
34, 1 S L
u,t)=+{——2|1+ — ns|, |- (x—ot), m el (Chxtar+8) vix, t) = Lulx, t)
8u, m 16m?u,
(74)
provided p4 < 0 and pz > 0. In particular, if m — 1-, then we have the dark soliton solutions:
1
3 BEE :
ubo ) =+ _% e tanh \/_ o (v el (Thkctars6), vix, 1) = Aulx, 1)
My My (75)
and the singular soliton solutions:
1
3u 3u? :
ulx, t) = + —8—3 1 + coth \/— " 3 (x — i) el(hxtar+6) v(x, t) = Lulx, t).
My My 76)
31 — m2 205 _ pp2
Family-2: If ¢, = 04(32 2m ), c, = ] (16 mn ), ce¢ > 0, then the coupled system Egs. (4) and (5) has the Jacobi elliptic functions
Co Co

solutions:
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ulx, t) = +1—

or

ulx,t)=+q——=|1
(>, 1) e

Chinese Journal of Physics 65 (2020) 613-628

[ 2

3 3u} )
Haly + msn[\/— 1:3 (x — ot), m] gi(lxtai+6) v(x, t) = Lu(x, t)

Ha Ha 77)

%

3 | 3u? .

Hs + ns[ - 1:3 (x — ot), m} el (Thxtar+6) v(x, t) = Lu(x, t)

My My (78)

provided p4 < 0 and p3 > 0. In particular, if m — 17, then we have the same dark soliton solutions Eq. (75) and the same singular
soliton solutions (76), while if m — 0%, then we have the periodic solution:

1
2 2

3 .
ulx, t) = + ] B} + csc[\/— T (x— vt)] elChetat+8) 3 ) = Lu(x, t).
My My 79)
. c cZ(4m? + 1) C .
Family 3. If ¢y = 5 = , ¢ < 0, then the coupled system Egs. (4) and (5) has the Jacobi elliptic functions
32m?c 16¢om?
solutions:
1
2 2
ule, ) = + —ﬁ l+c [ — j — ), m] eil(-crat+6), v(x, £) = Aux, ©)
(80)
or
3
3 “ .
ulx, t) = + e B + /1 — m?sd s (x—vt), m el(-hxtwt+6) v(x, t) = Lu(x, t)
8u, 16m?
(81)
provided p4 > 0 and p3 < 0. In particular, if m — 17, then we have the bright soliton solutions:
1
3u | 3u? :
ulx, t) = + —8—3 1 + sech \/ " 3 (x — i) el(Chxtwt+6) vix, t) = Lulx, t).
My My (82)
3.2 2 2 _ 4
Family 4. If ¢y = 2c4 m ,C = ¢ (5m ) , ¢6 < 0, then the coupled system Egs. (4) and (5) has the Jacobi elliptic functions
32¢¢(m? — 1) 16¢5(m? — 1)

solutions:

ulx,t) =+ —ﬁ 1+

or

ux, t) = +4-—

provided p4 > 0 and

Family-5: If ¢, =

functions solutions:

ulx, t) = +3—

or

ux, t) = +4—

3uy
J1 16(1 - m?),

2
(x — ot), m] ei(-hetattd) — y(x, £) = Lu(x, t)

(83)
1
3 [ 3u2 :
Ml + nd \/ 3 > (x—ot), m ei(-kxtar+6) v(x, t) = Lu(x, t)
81ty 16(1 — m*)u, 84)
us < 0.
[ ¢ (4m? = 5) .
5 , Gy = , €6 > 0, then the coupled system Egs. (4) and (5) has the Jacobi elliptic
32¢2(1 — m?) 16¢(m? — 1)
1
3u 3u? :
(1 +£nc \/—732 (x—ovt), m el(hrtar+6) v(x, t) = Lu(x, t)
L, 16(1 — m*)u, (85)
3u 1 3u? >
3 3 (= )
1+ ds|, /- (x—ot),m el(Chrtawt+6) v(x, t) = Lu(x, t)
8ty V1—m? [\/ 1601 — m)p, ] : (86)

provided p4 < 0 and ps > 0. If m — 0%, then we have the same periodic solutions Eq. (79) as well as the periodic solutions:
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1

- 5 2
3 2 .
ule, t) = + —8—3(1 + sec[\/— 1:3 (x— vt)]] el (-lxtar+6) v(x, t) = Lu(x, t).
My My (87)
. c; c(4m? — 5)
Family-6: If ¢y = 5 ,Cp = , ¢ > 0, then the coupled system Egs. (4) and (5) has the Jacobi elliptic functions
32¢2(1 — m?) 16¢s(m? — 1)
solutions:
1
3 [ 3u? _
ulx, t) = + e B + dn Hs (x—ot),m el(-ketat+6) v(x, t) = Lu(x, t)
8ty 16u,
(88)
or
v(x, t) = hu(x, t)
(89)

2
3 3ul )
ux, ) = + _% My (x — b), m]) gil-kc+ai+0)
U

1++1—m?nd \/
4 16,
provided p4 > 0 and p3 < 0. In particular, if m — 1-, then we have the same bright soliton solutions Eq. (82).

. (6) and (7),

4. Mathematical analysis: Case-III (n = 2)
To this aim, we make the same transforms Eqs. (8) and (9). Substituting Eqs. (8) and (9) into the system Eqgs

separating the real and the imaginary parts of the system Egs. (6) and (7), we have:
+ (619 + nele; + 8ipHe

e
) — (w — ke, + (B, — ak»p, +
e s ! ' 2 b1¢16 + Cl¢14§022 + d1§012§024 + 614016
+ G9! + 0190 + 1ol e) + mee, =0, (90)
ap — (@ — ka)p, + (B, — ke, + — 7 2f2¢’z e s + 6:0) + e el + 89De,
b2¢2 + cZ@z (Pl + d2(p2 (Pl + echz
+&p) + apfel + nelet + 0,000, =0, (o1)
and
v = a)e, + 2akp, =0, 92)
2akp, + (v — @), =0, (93)
Setting
?,(8) = A9, (6), 94
where A3 is a non zero constant, such that A3 = 1. Consequently, Egs. (90)-(93) reduce to
h
30" — [0 — kay — A3(B, — ark? + 1 + (61 + pAZ + 46D’
1439, [ 1 3(51 1 )]901 b, + C1/132 i d1/134 i 81)4015 (G has 3 1)(01
+ (& + Ao+ Adn + Afn)e! =0, (95)
6e] — [3(w — ko) — (B, — a:k?) ], + Al + (56, + 13272 + 8)¢;
! (bzﬂ.:? + ﬂ,?Cz + Ag)zdz + /‘1.3?62)@15 !
+ A9E, + Aoy + A3n + 1y)e] =0, (96)
and
(v — a)e, + 2a1kA30) = 0, 97)
2ake] + 43(v — w)p, = 0. (98)

From Egs. (97) and (98), one can obtain the velocity of the soliton as

V=0 — 2a1kA;, (99)
and

0(2/13 - 2a2k
A3 ’ (100)
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From Egs. (99) and (100), we have the constraint condition:
2akAE + (0 — oq) A3 — 2a,k = 0. (101)

From Eq. (101), we have

P —(o — o) £ (e — &) + 16 a,k>
T dark ’ (102)

provided a;a; > 0. Egs. (95) and (96) have the same form under the constraint conditions:

m; = ay, (103)
61 + pAZ + A6 = 1516, + Ay, + 6)). (104)
[w — kay — 3(6, — ak?)] = [ (@ — kap) — B, - ak?)]. (105)
&+ 230+ Afn + A9m) = LASE, + i ox + A5n + ), (106)
[BaAS + Afes + Aidy + A9ey) = afy (by + c1AF + diA + ey). (107)

Eq. (95) can be rewritten in the form:

o] + K — Kol + Ko + Kyp!? =0, (108)
where
‘- h _ [ — ke = 258, - ak]
YT aAs by Al + didd ) als ’
K= 61 + 1Az + A56) K. = ¢+ Ao+ Adn + A5n)
} als T als ’ (109)

provided ajA3(b; + c1A7 + diA5 + e)) # 0. Balancing rp15(§')(p1”(§) with @112(5) in Eq. (108) yields N = % Setting

21(6) = G3 (), (110)
where G(¢) is a new function of £, we get the new equation

2G'* — 3GG" — 9K, + 9K,G?* — 9K3G% - 9K,G* = 0. (111)
For integrability, one must select K3 = 0. This leads to the modification of the model of study as:

2G'* — 3GG" — 9K; + 9K, G* — 9K,G* = 0. 112)
Balancing [44-58] G(£)G”(&)with G*® in Eq. (112) yields N = 1. In the next subsection, we solve Eq. (112) using the proposed
method.

4.1. Extended auxiliary equation

According to this method, we assume that Eq. (112) has the formal solution:
G() = Ag + AF(§) + AF* (%), (113)

where Ay, A; and A, are constants to be determined, such that A, = 0, while the function F(¢) satisfies the first order Eq. (30).
Substituting Eq. (113) along with Eq. (30) into Eq. (112), collecting the coefficients of each power FEF©)Y,
(i=0,1,2,.8, j=0,1),and setting these coefficients to zero, we have a set of algebraic equations which can be solved by the aid of
Maple to obtain the following results:

9A(4A¢K 4 — 5K;) 27, 9 9 9 ,
cpg=——"""———"",06=—""-A;Ks + —K,, ¢y = ——A A Ky, cc = ——A; Ky,
0 404, 2T 0 T e T T MY T Ty
1, 1,
Ay =Ag, A =0,A =A,K = —-A)Kys — —AjKy, K, = K5, K4 = K,.
0 0 1 2 2 1 5 0 B4 2 0 B2 2 2. 4 4 (114)
From Egs. (31), (110), (113), and (114), then we have the solutions:
1
6 ={x4 (O} (115)
The coupled system Egs. (6) and (7) has the following families of solutions:
am—1)  c(Gmr—1)

Family-1: If ¢, =

75 G2 ——, €6 > 0, then the coupled system Egs. (6) and (7) has the Jacobi elliptic functions
32cgm 16cem

solutions:
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1

e [ —oe— n:
u, t) =+ \/ 52'" = - \/_ 9sz (x—vt), m ei(Chetartt), v(x, t) = Lulx, t)
2(m? + 1)K, | 4(m? + 1) ] a1e)
or
: 0
‘ 5K, 9K, i
ulx, t) = + ns| [— X — vt), m el (Fkxtat+6) v(x, t) = Lulx, t
(. 0) {\/2(m2 + DK, \/ 4(m? + 1) ( ) } G 1) = du(x. 1) a17)

provided K, < 0 and K4 < 0. In particular, if m — 1~, then we have the dark soliton solutions:

1
3
ulx, t) = —_0—{ K tanh[ K (x— ut)]} el (Chxtar+6) vix, t) = Lulx, t)
4K, 8 (118)

and the singular soliton solutions:

1
e 3
ulx, t) = 1{ K coth[ K (x— ut)]} el(Flxtwt+6) vix, t) = Lulx, t)
4K, 8 (119)

while if m — 0%, then we have the periodic solutions:

ulx, t) = i{\/SKZCSC[ K (x— ut)]}3 el(-ketat+) v(x, t) = ALux, t).
2K, 4 (120)

. (1 — m?) c2(5 — m?) o .
Family-2: If ¢y = 2 = 16 , ¢6 > 0, then the coupled system Egs. (6) and (7) has the same Jacobi elliptic functions
Co Co
solutions Egs. (116) and (117).
. el cZ(4m? + 1) R .
Family-3: If ¢, = 5, € = , €6 < 0, then the coupled system Egs. (6) and (7) has the Jacobi elliptic functions
32m?cé 16¢csm?
solutions:
1
/—2 — §
ule, t) = + SRS cn oK (x—ovt), m el(“hkxtar+6) v(x, t) = Lu(x, t)
202m? — 1)K, 402m? - 1) (121)
or
2 2 3
ue, ) = 4 (30 = MK Ky (x—vt), m|p eilcrord) v(x, 1) = Asu(x, )
2(2m? — 1)K, 42m? - 1) (122)

provided (2m? — 1)K, > 0 and K4 > 0. In particular, if m — 1~, then we have the bright soliton solutions:

1
3
ulx, t) = i{ &sech[ oK (x — vt)]} el (Fhxtat+0) vix, t) = Lulx, t)
2K, 4 (123)

provided K, > 0 and K4 > 0.
cim? cZ(5m? — 4)

Family-4: If ¢, = , Cy =
y 0 32¢2(m? — 1) > 7 T6cs(m? — 1)

, ¢¢ < 0, then the coupled system Egs. (6) and (7) has the Jacobi elliptic

functions solutions:

1

‘ 5K, [ | 9K, ] hetotss
ulx, t) =+ \/—7dn -2 (x—v),m el(-ketat+6) v(x, t) = Aulx, t)
{ 2 — 2K, |\ 4 - 2) | ’ (124)
or
A e | nE
)
ulx, t) = + \/—w nd \/—# (x—ovt), m el(-kxtat+) v(x, t) = Lulx, t)
2(m? — 2)K, 4(m? - 2) | (125)
provided (m? — 2) < 0, K, > 0 and K4 > 0. In particular, if m — 1~, then we have the same bright soliton solutions Eq. (123).
3 2(am? —
Family-5: If ¢, = G c = ¢ (4m” = 5) ce > 0, then the coupled system Eqs. (6) and (7) has the Jacobi elliptic

3221 —m?) ° 16cs(m? — 1)
functions solutions:

1

_ 50 -m)K 9K, _ ’ i (—koc+ot-+6) —
ulx, t) = t{\/ 2~ DK, nc[\/4(2m2 _— (x — i), m]} e , v(x, t) = Aulx, t) 126)
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or

u(x, ) = i{\/ 5K, ds[\/ 9K, (x — vt), m]}s gli(—hc+at+6) vx, t) = Aulx, t)

T 202m? — 1K, 42m? - 1) 127)

provided (2m? — 1)K, > 0 and K4 < 0. In particular, if m — 1-, then we have the singular soliton solutions:

1
3
ulx, t) = i{ —S—chsch[ oK (x — vt)]} el (—hrtatt8) v(x, t) = Aulx, t)
\ 2K, 4 (128)

provided K, > 0 and K4 < 0, while if m — 0%, then we have the same periodic solutions Eq. (120) as well as the periodic solutions:

1
3
ulx, t) = i{ K sec[ K (x— ut)]} el(Clxtot+6) vix, t) = Lulx, t)
2K, 4 (129)
provided K, < 0 and K4 < 0.
c; AC )

Family-6: If ¢, = , ¢ > 0, then the coupled system Egs. (6) and (7) has the same Jacobi elliptic

S =
3221 —m?)’ © lécg(m? — 1)
functions solutions Egs. (124) and (125).

5. Numerical simulations

We perform numerical simulations for bright and dark solitions having generalized anti-cubic nonlinearity.
5.1. Bright solitons

The result and the profile of three cases are shown in Figs. 1, 2 and 3 for the data given in the Tables 1, 2 and 3.
5.2. Dark solitons

The result and the profile of three cases are shown in Figs. 4, 5 and 6 for the data given in the Tables 1, 2 and 3.
6. Conclusions

The current paper retrieved optical soliton solutions in fiber BGs that is studied with generalized AC nonlinearity. For arbitrary n,
it is not possible to derive the model equations in birefringent fibers or Bragg gratings with a general value of n [31-34] Therefore it is
imperative to consider specific value(s) of n as permitted by the stability regime. The extended auxiliary equation is considered since

it is suitable and gives the abundance of results which display a wide spectrum of soliton solutions that are listed and enumerated
with their respective existence criteria. These solutions satisfy the original equations by using of the Maple. The special cases are

2

|

0.0

Fig. 1. Case-I, n = 0, numerically computed profile of the bright solitons for Eq. (41).
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Fig. 3. Case-III, n = 2, numerically computed profile of the bright solitons for Eq. (123).

Table 1
Case-1, n = 0; coefficients of Egs. (2) and (3) for bright and dark solitons.
l q b a d fi a B m &
1 1.2 0.01 0.024 0.50 4.20 0.33 1.20 0.01 0.32
1.5 0.07 0.028 0.25 3.20 0.16 1.10 0.03 0.12
Table 2
Case-II, n = 1; coefficients of Egs. (4) and (5) for bright and dark solitons.
l q b o d fi 27 B 8 Vi 6, m &
1 1.0 0.09 0.013 0.12 1.00 0.08 1.09 —0.02 0.7 1.6 1.00 1.34
2 1.6 0.04 0.044 0.80 1.20 0.10 1.30 —0.01 0.3 1.3 1.60 3.01
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Table 3

Case-III, n = 2; coefficients of Egs. (6) and (7) for bright and dark solitons.
l q b, [ q € fi a B Ll Vi 0 m n & ]
1 2.2 0.03 0.22 0.30 3.2 0.11 1.00 0.41 0.4 1.7 1.19 0.99 8.01 3.02 6.0
2 1.3 0.07 0.18 0.15 4.9 0.09 0.70 0.93 0.2 1.9 1.49 0.97 3.09 2.12 3.8

0.0 0.0

Fig. 4. Case-], n = 0, numerically computed profile of the dark solitons for Eq. (36).

0.0

Fig. 5. Case-II, n = 1, numerically computed profile of the dark solitons for Eq. (75).

considered because the aim of this work is to locate soliton solutions. The general solutions [35-43] lead to a variety of solution
formats that are not applicable in telecommunication industry. The results are thus very important in fibers with BGs. These results
are important for future research activities. Later, additional nonlinear forms of refractive index will be taken into account. The
soliton parameter dynamics will be looked for by the aid of variational principle, collective variables, moment method, soliton
perturbation theory and several others. Additional integration methodologies will be employed in future to handle fiber BGs [21-30].
These are being currently worked upon and such results will be exhibited down the road.
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2

vl

0.0

Fig. 6. Case-III, n = 2, numerically computed profile of the dark solitons for Eq. (118).

Declaration of Competing Interest

The authors also declare that there is no conflict of interest.

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under

Grant No. (KEP-64-130-38). The authors, therefore, acknowledge with thanks DSR technical and financial support. The research work
of the seventh author (MRB) was supported by the grant NPRP 11S-1126-170033 from QNRF and he is thankful for it.

References

[1]
[2]

[3]
[4]
[5]
[6]
[71
[81

[9

—

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

J. Atai, B.A. Malomed, Bragg-grating solitons in a semilinear dual-core system, Phys. Rev. E 62 (2000) 8713, https://doi.org/10.1103/PhysRevE.62.8713.

J. Atai, B.A. Malomed, Solitary waves in systems with separated Bragg gratings and nonlinearity, Phys. Rev. E 64 (2001) 066617, https://doi.org/10.1103/
PhysRevE.64.066617.

J. Atai, B. Malomed, Families of Bragg grating solitons in a cubic-quintic medium, Phys. Lett. A 284 (2001) 247-252, https://doi.org/10.1016/50375-9601(01)
00314-0.

J. Atai, B. Malomed, Spatial solitons in a medium composed of self-focusing and self-defocussing layers, Phys. Lett. A 298 (2002) 140-148, https://doi.org/10.
1016/50375-9601(02)00473-5.

J. Atai, B. Malomed, Gap solitons in Bragg gratings with dispersive reflectivity, Phys. Lett. A 342 (2005) 404-412, https://doi.org/10.1016/j.physleta.2005.05.
081.

J. Atai, Interaction of Bragg grating solitons in a cubic quintic medium, J. Opt. B Quantum Semiclassical Opt. 6 (2004) S177, https://doi.org/10.1088/1464-
4266/6/5/003.

B.H. Baratali, J. Atai, Gap solitons in dual-core Bragg gratings with dispersive reflectivity, J. Opt 14 (2012) 065202, https://doi.org/10.1088/2040-8978/14/6/
065202.

A. Biswas, Conservation laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities, Optik 176 (2019) 198-201, https://doi.org/10.1016/
j-ijle0.2018.09.074.

A. Biswas, M. Ekici, A. Sonmezoglu, M. Belic, Chirped and chirp—free optical solitons with generalized anti-cubic nonlinearity by extended trial function scheme,
Optik 178 (2019) 636-644, https://doi.org/10.1016/].ijle0.2018.09.045.

S.A.M.S. Chowdhury, J. Atai, Stability of Bragg grating solitons in a semilinear dual core system with dispersive reflectivity, IEEE J. Quantum Elect. 50 (2014)
458-465, https://doi.org/10.1109/JQE.2014.2318206.

S.A.M.S. Chowdhury, J. Atai, Interaction dynamics of Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity, J. Mod. Opt. 63 (2016)
2238-2245, https://doi.org/10.1080/09500340.2016.1193242.

S.A.M.S. Chowdhury, J. Atai, Moving Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity, Sci. Rep. 7 (2017) 4021, https://doi.
0rg/10.1038/541598-017-04179-6.

S. Dasanayaka, J. Atai, Stability of Bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity, Phys. Lett. A 375 (2010) 225-229,
https://doi.org/10.1016/j.physleta.2010.10.043.

M.J. Islam, J. Atai, Stability of Bragg grating solitons in a semilinear dual-core system with cubic—quintic nonlinearity, Nonlinear Dyn. 87 (2017) 1693-1701,
https://doi.org/10.1007/511071-016-3145-y.

S. Kumar, S. Malik, A. Biswas, Y. Yildirim, A.S. Alshomrani, M.R. Belic, Optical solitons with generalized anti—cubic nonlinearity by lie symmetry, Optik (2020)
163638, https://doi.org/10.1016/j.ijle0.2019.163638.

D.R. Neill, J. Atai, B.A. Malomed, Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity, J. Opt. A 10 (2008) 085105, https://
doi.org/10.1088/1464-4258,/10/8/085105.

E.M.E. Zayed, R.M.A. Shohib, A. Biswas, Y. Yildirim, F. Mallawi, M.R. Belic, Chirped and chirp-free solitons in optical fiber Bragg gratings with dispersive
reflectivity having parabolic law nonlinearity by Jacobi’s elliptic function, Results Phys. 15 (2019) 102784, https://doi.org/10.1016/j.rinp.2019.102784.
E.M.E. Zayed, M.E.M. Alngar, A. Biswas, H. Triki, Y. Yildirim, A.S. Alshomrani, Chirped and chirp—free optical solitons in fiber Bragg gratings with dispersive

627


https://doi.org/10.1103/PhysRevE.62.8713
https://doi.org/10.1103/PhysRevE.64.066617
https://doi.org/10.1103/PhysRevE.64.066617
https://doi.org/10.1016/S0375-9601(01)00314-0
https://doi.org/10.1016/S0375-9601(01)00314-0
https://doi.org/10.1016/S0375-9601(02)00473-5
https://doi.org/10.1016/S0375-9601(02)00473-5
https://doi.org/10.1016/j.physleta.2005.05.081
https://doi.org/10.1016/j.physleta.2005.05.081
https://doi.org/10.1088/1464-4266/6/5/003
https://doi.org/10.1088/1464-4266/6/5/003
https://doi.org/10.1088/2040-8978/14/6/065202
https://doi.org/10.1088/2040-8978/14/6/065202
https://doi.org/10.1016/j.ijleo.2018.09.074
https://doi.org/10.1016/j.ijleo.2018.09.074
https://doi.org/10.1016/j.ijleo.2018.09.045
https://doi.org/10.1109/JQE.2014.2318206
https://doi.org/10.1080/09500340.2016.1193242
https://doi.org/10.1038/s41598-017-04179-6
https://doi.org/10.1038/s41598-017-04179-6
https://doi.org/10.1016/j.physleta.2010.10.043
https://doi.org/10.1007/s11071-016-3145-y
https://doi.org/10.1016/j.ijleo.2019.163638
https://doi.org/10.1088/1464-4258/10/8/085105
https://doi.org/10.1088/1464-4258/10/8/085105
https://doi.org/10.1016/j.rinp.2019.102784

E.M.E. Zayed, et al. Chinese Journal of Physics 65 (2020) 613-628

[19]
[20]
[21]
[22]
[23]

[24]

[25]
[26]
[27]
[28]
[29]
[30]

[31]
[32]

[33]
[34]
[35]
[36]

[37]
[38]

[39]
[40]
[41]
[42]
[43]
[44]

[45]
[46]

[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]

[58]

reflectivity having quadratic—cubic nonlinearity by sub-ODE approach, Optik 203 (2020) 163993, https://doi.org/10.1016/j.ijle0.2019.163993.

E.M.E. Zayed, R.M.A. Shohib, A. Biswas, M. Ekici, H. Triki, A.K. Alzahrani, M.R. Belic, Optical solitons with fiber Bragg gratings and dispersive reflectivity having
parabolic-nonlocal combo nonlinearity via three prolific integration architectures, Optik (2019) 164065, https://doi.org/10.1016/j.ijle0.2019.164065.
E.M.E. Zayed, M.E.M. Alngar, M. El-Horbaty, A. Biswas, Y. Yildirim, A.S. Alshomrani, M.R. Belic, Chirped and chirp—free optical solitons having generalized anti-
cubic nonlinearity with a few cutting-edge integration technologies, Optik (2019) 163745, https://doi.org/10.1016/j.ijle0.2019.163745.

A.M. Wazwaz, Multiple complex soliton solutions for the integrable KdV, fifth—order Lax, modified KdV, Burgers, and Sharma-Tasso-Olver equations, Chin. J.
Phys 59 (2019) 372-378, https://doi.org/10.1016/j.cjph.2019.03.001.

A.M. Wazwaz, The integrable Vakhnenko—Parkes (VP) and the modified Vakhnenko-Parkes (MVP) equations: multiple real and complex soliton solutions, J.
Phys 57 (2019) 375-381, https://doi.org/10.1016/j.cjph.2018.11.004.

Y. Han, B. Tian, Y.-Q. Yuan, C.-R. Zhang, S.S. Chen, Bilinear forms and bright-dark solitons for a coupled nonlinear schrédinger system with variable coefficients
in an inhomogeneous optical fiber, Chin. J. Phys 62 (2019) 202-212, https://doi.org/10.1016/j.cjph.2019.09.022.

S.-S. Chen, B. Tian, L. Liu, Y.-Q. Yuan, X.X. Du, Breathers, multi-peak solitons, breather-to-soliton transitions and modulation instability of the variable-
coefficient fourth-order nonlinear schrédinger system for an inhomogeneous optical fiber, Chin. J. Phys 62 (2020) 274-283, https://doi.org/10.1016/j.cjph.
2019.09.021.

Y.X. X, B. Tian, X.-Y. Wu, H.-P. Chai, Y. Jiang, Soliton collisions for a higher-order nonlinear schrédinger-maxwell-bloch system in an erbium-doped fiber, Chin.
J. Phys 55 (2017) 1369-1376, https://doi.org/10.1016/].cjph.2017.04.008.

R. Guo, R.R. Jia, Rogue wave solutions for the (2+ 1)-dimensional complex modified korteweg—de vries and maxwell-bloch system, Appl. Math. Lett. (2020)
106284, https://doi.org/10.1016/j.aml1.2020.106284.

X.-J. Zhao, R. Guo, H.Q. Hao, N-Fold darboux transformation and discrete soliton solutions for the discrete hirota equation, Appl. Math. Lett. 75 (2018) 114-120,
https://doi.org/10.1016/j.aml.2017.07.002.

H.-Q. Hao, R. Guo, J.W. Zhang, Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear schrédinger equation,
Nonlinear Dyn. 88 (2017) 1615-1622, https://doi.org/10.1007/s11071-017-3333-4.

R. Guo, H.Q. Hao, Breathers and localized solitons for the Hirota-Maxwell-Bloch system on constant backgrounds in erbium doped fibers, Ann. Phys. 344 (2014)
10-16, https://doi.org/10.1016/j.a0p.2014.02.006.

H.-H. Zhao, X.-J. Zhao, R. Guo, Periodic solutions, breathers and rogue waves in a generalized coupled Hirota system, Optik 127 (2016) 9295-9304, https://doi.
org/10.1016/j.ijleo.2016.07.023.

N.A. Kudryashov, A generalized model for description pulses in optical fiber, Optik 189 (2019) 42-52, https://doi.org/10.1016/j.ijle0.2019.05.069.

A. Biswas, A. Sonmezoglu, M. Ekici, A.S. Alshomrani, M.R. Belic, Optical solitons with kudryashov’s equation by F-expansion, Optik 199 (2019) 163338, https://
doi.org/10.1016/j.ijle0.2019.163338.

A. Biswas, M. Ekici, A. Sonmezoglu, A.S. Alshomrani, M.R. Belic, Optical solitons with Kudryashov’s equation by extended trial function, Optik 202 (2020)
163290, https://doi.org/10.1016/j.ijle0.2019.163290.

A. Biswas, J. Vega-Guzman, M. Ekici, Q. Zhou, H. Triki, A.S. Alshomrani, M.R. Belic, Optical solitons and conservation laws of kudryashov’s equation using
undetermined coefficients, Optik 202 (2020) 163417, https://doi.org/10.1016/j.ijle0.2019.163417.

N.A. Kudryashov, General solution of the traveling wave reduction for the chen-lee-liu equation, Optik 186 (2019) 339-349, https://doi.org/10.1016/j.ijleo.
2019.04.127.

N.A. Kudryashov, Traveling wave solutions of the generalized nonlinear Schrodinger equation with cubic-quintic, Optik 186 (2019) 27-35, https://doi.org/10.
1016/j.ijle0.2019.05.026.

N.A. Kudryashov, First integrals and general solution of the Fokas-Lenells equation, Optik 195 (2019) 163135, https://doi.org/10.1016/j.ijle0.2019.163135.
N.A. Kudryashov, First integral and general solution of travelng wave reduction for the Triki-Biswas equation, Optik 185 (2019) 275-281, https://doi.org/10.
1016/j.ijle0.2019.03.087.

N.A. Kudryashov, General solution of the traveling wave reduction for the Kundu-Mukherjee-Naskar model, Optik 186 (2019) 22-27, https://doi.org/10.1016/j.
ijleo.2019.04.072.

N.A. Kudryashov, Highly dispersive solitary wave solutions of perturbed nonlinear schrodinger equations, Appl. Math. Comput. 371 (2020) 124972, https://doi.
org/10.1016/j.amc.2019.124972.

N.A. Kudryashov, Solitary wave solutions of hierarchy with non-local nonlinearity, Appl. Math. Lett. 103 (2020) 106155, https://doi.org/10.1016/j.aml.2019.
106155.

N.A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik (2020) 163550, https://doi.org/10.1016/j.ijleo.
2019.163550.

N.A. Kudryashov, Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrédinger equations, Optik 206 (2020) 164335, https://doi.org/
10.1016/j.ijle0.2020.164335.

N.A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A 147 (1990) 287-291, https://doi.org/10.1016/0375-
9601(90)90449-X.

N.A. Kudryashov, Exact soliton solutions of the generalized evolution equation of wave dynamics, J. Appl. Math. Mech. 52 (1988) 360-365.

N.A. Kudryashov, On types of nonlinear nonintegrable equations with exact solutions, Phys. Lett. A 155 (1991) 269-275, https://doi.org/10.1016/0375-
9601(91)90481-M.

N.A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Soliton and Fract. 24 (2005) 1217-1231,
https://doi.org/10.1016/j.chaos.2004.09.109.

N.A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 2248-2253,
https://doi.org/10.1016/j.cnsns.2011.10.016.

E.J. Parkes, B.R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun. 98
(1996) 288-300, https://doi.org/10.1016/0010-4655(96)00104-X.

W. Malfliet, W. Hereman, The tanh method: I exact solutions of nonlinear evolution and wave equations, Phys. Scr. 54 (1996) 563-568, https://doi.org/10.
1088/0031-8949/54/6/003.

E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 227 (4-5) (2000) 212-218, https://doi.org/10.1016/S0375-
9601(00)00725-8.

Z. Fu, S. Liu, S. Liu, Q. Zhao, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A 290 (1-2) (2001)
72-76, https://doi.org/10.1016/S0375-9601(01)00644-2.

S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289 (1-2) (2001)
69-74, https://doi.org/10.1016/50375-9601(01)00580-1.

N.A. Kudryashov, Exact solutions and integrability of the Duffing -Van der Pol equation, Regul. Chaotic Dyn. 23 (4) (2018) 471-479, https://doi.org/10.1134/
$156035471804007X.

N.A. Kudryashov, Exact solutions of the equation for surface waves in a convecting fluid, Appl. Math. Comput. 344 (2019) 97-106, https://doi.org/10.1016/j.
amc.2018.10.005.

N.A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 2248-2253,
https://doi.org/10.1016/j.cnsns.2011.10.016.

N.A. Kudryashov, Polynomals in logistics function and solitary waves of nonlinear differential equations, Appl. Math. Comput. 219 (2013) 9245-9253, https://
doi.org/10.1016/j.amc.2013.03.032.

N.A. Kudryashov, Logistic function as solution of many nonlinear differential equations, Appl. Math. Model. 39 (2015) 5733-5742, https://doi.org/10.1016/j.
apm.2015.01.048.

628


https://doi.org/10.1016/j.ijleo.2019.163993
https://doi.org/10.1016/j.ijleo.2019.164065
https://doi.org/10.1016/j.ijleo.2019.163745
https://doi.org/10.1016/j.cjph.2019.03.001
https://doi.org/10.1016/j.cjph.2018.11.004
https://doi.org/10.1016/j.cjph.2019.09.022
https://doi.org/10.1016/j.cjph.2019.09.021
https://doi.org/10.1016/j.cjph.2019.09.021
https://doi.org/10.1016/j.cjph.2017.04.008
https://doi.org/10.1016/j.aml.2020.106284
https://doi.org/10.1016/j.aml.2017.07.002
https://doi.org/10.1007/s11071-017-3333-4
https://doi.org/10.1016/j.aop.2014.02.006
https://doi.org/10.1016/j.ijleo.2016.07.023
https://doi.org/10.1016/j.ijleo.2016.07.023
https://doi.org/10.1016/j.ijleo.2019.05.069
https://doi.org/10.1016/j.ijleo.2019.163338
https://doi.org/10.1016/j.ijleo.2019.163338
https://doi.org/10.1016/j.ijleo.2019.163290
https://doi.org/10.1016/j.ijleo.2019.163417
https://doi.org/10.1016/j.ijleo.2019.04.127
https://doi.org/10.1016/j.ijleo.2019.04.127
https://doi.org/10.1016/j.ijleo.2019.05.026
https://doi.org/10.1016/j.ijleo.2019.05.026
https://doi.org/10.1016/j.ijleo.2019.163135
https://doi.org/10.1016/j.ijleo.2019.03.087
https://doi.org/10.1016/j.ijleo.2019.03.087
https://doi.org/10.1016/j.ijleo.2019.04.072
https://doi.org/10.1016/j.ijleo.2019.04.072
https://doi.org/10.1016/j.amc.2019.124972
https://doi.org/10.1016/j.amc.2019.124972
https://doi.org/10.1016/j.aml.2019.106155
https://doi.org/10.1016/j.aml.2019.106155
https://doi.org/10.1016/j.ijleo.2019.163550
https://doi.org/10.1016/j.ijleo.2019.163550
https://doi.org/10.1016/j.ijleo.2020.164335
https://doi.org/10.1016/j.ijleo.2020.164335
https://doi.org/10.1016/0375-9601(90)90449-X
https://doi.org/10.1016/0375-9601(90)90449-X
http://refhub.elsevier.com/S0577-9073(20)30072-1/sbref0045
https://doi.org/10.1016/0375-9601(91)90481-M
https://doi.org/10.1016/0375-9601(91)90481-M
https://doi.org/10.1016/j.chaos.2004.09.109
https://doi.org/10.1016/j.cnsns.2011.10.016
https://doi.org/10.1016/0010-4655(96)00104-X
https://doi.org/10.1088/0031-8949/54/6/003
https://doi.org/10.1088/0031-8949/54/6/003
https://doi.org/10.1016/S0375-9601(00)00725-8
https://doi.org/10.1016/S0375-9601(00)00725-8
https://doi.org/10.1016/S0375-9601(01)00644-2
https://doi.org/10.1016/S0375-9601(01)00580-1
https://doi.org/10.1134/S156035471804007X
https://doi.org/10.1134/S156035471804007X
https://doi.org/10.1016/j.amc.2018.10.005
https://doi.org/10.1016/j.amc.2018.10.005
https://doi.org/10.1016/j.cnsns.2011.10.016
https://doi.org/10.1016/j.amc.2013.03.032
https://doi.org/10.1016/j.amc.2013.03.032
https://doi.org/10.1016/j.apm.2015.01.048
https://doi.org/10.1016/j.apm.2015.01.048

	Optical solitons in fiber Bragg gratings with generalized anti-cubic nonlinearity by extended auxiliary equation
	Introduction
	Governing model
	Case-I (n=0)
	Case-II (n=1)
	Case-III (n=2)


	Mathematical analysis: Case-I (n=0)
	Extended auxiliary equation

	Mathematical analysis: Case-II (n=1)
	Extended auxiliary equation

	Mathematical analysis: Case-III (n=2)
	Extended auxiliary equation

	Numerical simulations
	Bright solitons
	Dark solitons

	Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References




