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A B S T R A C T

This paper implements modified simple equation to secure dark and singular optical solitons to
fiber Bragg gratings. Five forms of nonlinear refractive index are considered. The existence cri-
teria for such solitons are also enumerated.

1. Introduction

The main focus on the study of solitons is with optical fibers, PCF, metamaterials, magneto-optic waveguides, DWDM networks
and several other devices [1–20]. However, inadvertently less attention is paid in addressing the dynamics of solitons in fiber Bragg
gratings (FBGs). FBGs are considered excellent sensor elements, suitable for measuring various engineering parameters such as
temperature, strain, pressure, tilt, displacement, acceleration, load, as well as the presence of various industrial, biomedical and
chemical substances in both static and dynamic modes of operation. The FBG is also an excellent signal shaping and filtering element
for a growing field of applications. This paper revisits soliton dynamics in FBG with dispersive reflectivity having five forms of
nonlinear refractive index. While considerable results in FBG have been reported in the past, most of them are with Kerr and
parabolic laws. In addition, a lot of results reported are from numerical perspective [1–5,12–20]. The current work focuses on
analytical aspect of Bragg gratings, with dispersive reflectivity, by modified simple equation method. This leads to the retrieval of
dark and singular solitons to the models. The results of the mathematical analysis are all displayed after a quick brush-up of the
preliminary protocols. The details are jotted in subsequent sections.
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2. Preliminaries

Suppose we have a nonlinear evolution equation in the form

… =P u u u u u u( , , , , , , ) 0,t x xx tt tx (1)

where P is a polynomial in u x t( , ) and its partial derivatives in which the highest order derivatives and nonlinear terms are involved.
In the following, we demonstrate the main steps of this method.

Step-1: We use the transformation

= =u x t u x( , ) ( ), ct, (2)

where c is a constant to be determined, to reduce Eq. (1) to the following ODE:

… =Q u u u( , , , ) 0, (3)

where Q is a polynomial in u ( ) and its total derivatives, while = d
d .

Step-2: We suppose that Eq. (3) has the formal solution.

=
=

u a( ) ( )
( )

,
l

N

l

l

0 (4)

where al are constants to be determined, such that a 0N , and ( ) is an unknown function to be determined later.
Step-3: We determine the positive integer N in Eq. (4) by considering the homogeneous balance between the highest order

derivatives and the nonlinear terms in Eq. (3).
Step-4: We substitute (4) into (3), then we calculate all the necessary derivatives …u u, , of the unknown function u ( ) and we

account the function ( ). As a result of this substitution, we get a polynomial of ( )/ ( )and its derivatives. In this polynomial, we
gather all the terms of the same power of ( )j , = …j a b0, , , and its derivatives, and we equate with zero all the coefficients of this
polynomial. This operation yields a system of equations which can be solved to find akand ( ). Consequently, we can get the exact
solutions of Eq. (1).

3. Application to Bragg gratings

3.1. Kerr law

The dimensionless form of the coupled NLSE in fiber Bragg gratings is given by [6,7]:

+ + + + + =iq a r b q c r q i q r( | | | | ) 0,t x1 xx 1
2

1
2

1 1 (5)

+ + + + + =ir a q b r c q r i r q( | | | | ) 0.t x2 xx 2
2

2
2

2 2 (6)

In Eqs. (5) and (6), q x t( , ) and r x t( , ) represent forward and backward propagating wave profiles while aj for =j 1, 2 are the
coefficients of dispersive reflectivity. Then, bj are the coefficients of self-phase modulation terms; cj represents cross-phase mod-
ulation; j represents the inter-modal dispersion and finally j are the detuning parameters. In order to solve this system, we introduce
the following transformation

=q x t P x t e( , ) ( , ) ,i x t
1

( , ) (7)

and

=r x t P x t e( , ) ( , ) ,i x t
2

( , ) (8)

where P x t( , )j for =j 1, 2 are the amplitude parts of the waves while x t( , ) is the phase component of both waves. One needs to use
phase-matching condition to permit integrability. Therefore, the phase component is taken to be

= + +x t x t( , ) , (9)

where represents the soliton frequency and is the soliton wave number and finally, is the phase constant. Now, substituting (7)
and (8) into (5) and (6) and decomposing into real and imaginary parts leads to the following set of coupled equations:

+ + =P a k P a P
x

b P c P P( ) ( ) ( ) 0,l l l l l l
l

l l l l l
2 ˜

2 ˜
2

2
˜
2

(10)

and

+ =P
t

a P
x

P
x

2 0,l
l

l
l

l˜

(11)

where =l 1, 2 and =l l˜ 3 . From the imaginary part relation, the speed of the solitons is now given by:

+ + =P a P a P b P c P P( ) ( ) ( ) 0,l l l l l l l l l l l l
2 ˜ ˜

2
˜
2 (12)
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and

+ + =v a P( 2 ) 0.l l l (13)

Form the last equation, one recovers that

=v a2 .l l (14)

Next, from (14), one obtains the following relation between the speed of the solitons:

=a a( ) 2( ) 0.l1 2 2 (15)

Setting the coefficients of independent parameters to zero brings about
= =a a, ,j j (16)

for =j 1, 2, and finally the speed of the solitons changes to

=v a2 . (17)

Thus, Eqs. (5) and (6) transforms to

+ + + + + =iq ar b q c r q i q r( | | | | ) 0,t xxx 1
2

1
2

1 (18)

+ + + + + =ir aq b r c q r i r q( | | | | ) 0.t xxx 2
2

2
2

2 (19)

Also, real parts turn to

+ + =P a P a P b P c P P( ) ( ) ( ) 0.l l l l l l l l l l
2 ˜ ˜

2
˜
2 (20)

Now, balancing the terms Pl and Pl
5 in Eq. (20) lead to =N 1

2 . Set

=P U .l l

1
2 (21)

So that (20) transforms to

+ + =U a U aU bU cU U( ) ( ) ( ) 0,2 2 2 3 (22)

for this solution Eq. (22), assume

=
=

U A a( ) ( )
( )

, 0,
i

N

i

i

N
0 (23)

where Ai are all constants to be determined, Balancing U with U3 in Eq. (22) given =N 1. Consequently, we arrive at

= +U A A( ) ( )
( )

.0 1
(24)

Substituting Eq. (24) in Eq. (22) and then setting the coefficients of = …j( 0, 1, 2, )j to zero, then we obtain a set of algebraic
equation involving A A, , ,0 1 as follows:

3 Coeff.:

+ + =A k a A b c( ) (2 ( )) 0,l l1
3 2

1
2 (25)

2 Coeff.:

+ =A A A b c k a3 ( ( ) ) 0,l l1 0 1
2 (26)

1 Coeff.:

+ + + + + =A a A b c k a( ( ( ) 3 ( ) ) ) 0,l l l1
2

0
2 2 (27)

0 Coeff.:

+ + + + =A a A b c( ( ) ( ) ) 0.l l l0
2

0
2 (28)

Solving this system, we obtain

= ±
+

+
=

+
A

a
b c

A a
b c

( )
, 2 ,l

l l l l
0 1

(29)

and

= ± +A b c
a

2( ) ,l l
0 (30)
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= +A b c
a

2 ( ) .l l0
2

(31)

From Eqs. (30) and (31), we can deduce that

= ±
+

± +

A
a

b c
k e1

2( )
,

l l

A b c
a

0
1

2( )l l
l0

(32)

=
+

+± +

A
a

b c
k e k1

2( )
,

l l

A b c
a

0
2 1

2( )
2

l l
l0

(33)

where k1 and k2 are constants of integration. Substituting Eqs. (32) and (33) into Eq. (24), we obtain following the following exact
solution to Eqs. (5) and (6)

= ±
+

+
+

+

+
±

+
±

+ +

+

+
q x t

a
b c

e

k e k
e( , )

( )
,

k a
A b c

A x

A
a

b c
A x

i x t1

1 1

( )
( vt)

1
2( ) 1

( vt)
2

( )

b c
a

b c
a

1
0 1 1

0
2( 1 1)

02 1 1
0

2( 1 1)

(34)

= ±
+

+
+

+

+
±

+
±

+ +

+

+
r x t

a
b c

e

k e k
e( , )

( )
,

k a
A b c

A x

A
a

b c
A x

i x t2

2 2

( )
( vt)

1
2( ) 1

( vt)
2

( )

b c
a

b c
a

1
0 2 2

0
2( 2 2)

02 2 2
0

2( 2 2)

(35)

where v is given by (17) and is arbitrary.
If we set = +k A b c

a1
2 ( )02 2 2 , = ±k 12 , then we have

= ±
+

+
+ + +q x t

a
b c

a
a

x e( , )
( )

tanh
( )

2
( vt) ,i x t1

1 1

1 ( )

(36)

= ±
+

+
+ + +r x t

a
b c

a
a

x e( , )
( )

tanh
( )

2
( vt) ,i x t2

2 2

2 ( )

(37)

or

= ±
+

+
+ + +q x t

a
b c

a
a

x e( , )
( )

coth
( )

2
( vt) ,i x t1

1 1

1 ( )

(38)

= ±
+

+
+ + +r x t

a
b c

a
a

x e( , )
( )

coth
( )

2
( vt) ,i x t2

2 2

2 ( )

(39)

where is arbitrary constant.
These solution represent dark and singular soliton solution where

+ >a a( ) 0.l

3.2. Parabolic law

The dimensionless form of the coupled NLSE in fiber Bragg gratings, having parabolic law of nonlinearity, is given by [8]. For
Bragg grating equation with time dependent coefficient is

+ + + + + + + + =iq a r b q c r q q q r r q i q r( | | 2 | | ) ( | | | | | | | | ) 0,t x1 xx 1 1
2

1
4

1
2 2

1
4

1 1 (40)

+ + + + + + + + =ir a q b r c q r r q r q r i r q( | | | | ) ( | | | | | | | | ) 0.t x2 xx 2
2

2
2

2
4

2
2 2

2
4

2 2 (41)

In Eqs. (40) and (41), q x t( , ) and r x t( , ) represent forward and backward propagating waves resprctively while aj for = …j( 0, 1, ) are
coefficients of dispersive reflectivity. Next, bj are the coefficients of SPM; cj represent XPM for cubic nonlinearity portion. For quintic
nonlinear part, j are coefficients of SPM while j and j are coefficients of XPM. Next, j represent inter-model dispersion and finally

j are detuning parameters. All of the coefficients are real valued constant and =i ( 1 ).
To integrate the couple NLSE (40) and (41), one introduces:

=q x t P e( , ) ( ) ,i x t
1

( , ) (42)

and

=r x t P e( , ) ( ) ,i x t
2

( , ) (43)

where Pj with = …j( 0, 1, ) are the amplitude constituents of the solitons and
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= x v t, (44)

where v indicates the speed of the soliton. The phase component of both solitons is structured as:

= + +x t x t( , ) , (45)

where , and are the frequency, wave number and phase constant, respectively. Next, substitute (42) and (43) into (40) and (41).
Thus, the real part is

+ + + + + + + =P a P b P c P P P P P P P a P( ) ( ) 0,l l l l l l l l l l l l l l l l l l l l
2 3

˜
2 5 3

˜
2

˜
4

˜ (46)

while the imaginary part is

+ =v P a P( ) 2 0,l l l l̃ (47)

where =l 1, 2 and =l l˜ 3 .Next, the balancing principle brings about

=P P ,l l˜

and so (46) and (47) respectively gives

+ + + + + + + =a a P b c P P a P( ) ( ) ( ) 0,l l l l l l l l l l l l l
2 3 5 (48)

and

+ + =v a P( 2 ) 0.l l l (49)

Form the last equation, one recovers

=v a2 .l l (50)

Next, from (50), one obtains the following relation between the speed of the solitons:

=a a( ) 2( ) 0.l1 2 2 (51)

Upon setting the coefficients of independent parameters to zero brings about
= =a a, ,j j (52)

for =j 1, 2,and finally the speed of the solitons changes to
=v a2 . (53)

Thus, Eqs. (40) and (41) transforms to

+ + + + + + + + =iq ar b q c r q q q r r q i q r( | | 2 | | ) ( | | | | | | | | ) 0,t xxx 1 1
2

1
4

1
2 2

1
4 (54)

+ + + + + + + + =ir aq b r c q r r q r q r i r q( | | | | ) ( | | | | | | | | ) 0.t xxx 2
2

2
2

2
4

2
2 2

2
4

2 (55)

Also, real parts turn to

+ + + + + + + =a a P b c P P a P( ) ( ) ( ) 0.l l l l l l l l l l l l l
2 3 5 (56)

Now, balancing the terms Pl and Pl
5 in Eq. (56) lead to =N 1

2 . Set

=P U .l l

1
2 (57)

So that (56) transforms to

+ + + + + + =a U b c U U U U U4( ) 4( ) 4( ) (2 ( ) ) 0.l l l l l l l l l l l l
2 2 3 4 2 (58)

For the solution of Eq. (58), assume:

=
=

U A A( ) ( )
( )

, 0,
i

N

i

i

N
0 (59)

where ai are all constants to be determined, Balancing UU with U4 in Eq. (58) given =N 1. Consequently, we reach

= +U A A( ) ( )
( )

.0 1
(60)

Substituting Eq. (60) in Eq. (58) and then setting the coefficients of = …j( 0, 1, 2, )j to zero, then we obtain a set of algebraic
equation involving a a, , , t0 1 as following

4 Coeff.:

+ + + =A a A(3 4 ( ))( ) 0,l l l1
2

1
2 4 (61)

3 Coeff.:

A. Darwish, et al. Optik - International Journal for Light and Electron Optics 203 (2020) 163886

5



+ + + + + =A A A b c a A a A4 ( ( ( ) ) ( 4 ( )))( ) 0,l l l l l1 1 1 0 1
2 2 (62)

2 Coeff.:

+ + + + + =A A a A b c A a a aA( ( 4( ) ( 3 ( ) 6 ( ) ) ( ) 2 ) 6 ) 0,l l l l l l l1 1
2 2

0 0
2 2 (3)

0 (63)

1 Coeff.:

+ + + + + + + + =A A a A b c A a2 ( (4( ) 6 ( ) 8 ( )) ) 0,l l l l l l l0 1
2

0 0
2 (64)

0 Coeff.:

+ + + + + + + =A a A b c A4 ( ( ) ( ) ) 0.l l l l l l l0
2 2

0 0
2 (65)

Solving this system, we obtain

= +
+ +

=
+ +

A b c A a3( )
4( )

, 3
4( )

,l l

l l l l l l
0 1

(66)

=
+ + + +

+ +
a b c16( )( ( ) ) 3( )

16( )
,l l l l l l

l l l

2

(67)

and

= ± +
+ +

b c
a
3( )

4 ( )
,l l

l l l

2

(68)

= +
+ +

b c
a

3( )
4 ( )

,l l

l l l

2

(69)

From Eqs. (68) and (69), we can deduce

= ±
+ +

+
± +

+ +a
b c

k e
4 ( )

3( )
,l l l

l l

b c
a

2 1

3( )
4 ( )

l l
l l l

2

(70)

=
+ +

+
+

± +
+ +a

b c
k e k

4 ( )
3( )

,l l l

l l

b c
a

2 1

3( )
4 ( ) 2

l l
l l l

2

(71)

where k1 and k2 are constants of integration. Substituting Eqs. (70) and (71) into Eq. (60), we obtain following the following exact
solution to Eqs. (54) and (55).

= +
+ +

+

+

+
±

+ +
+

±

+ +

+
+ +

+
+ +

q x t b c k e

k e k

e( , ) 3( )
4( )

,
a

b c

a
b c

i x t1 1

1 1 1

1

4 ( )
3( ) 1 2

( )

b c
a

b c
a

1 1

3( 1 1)2
4 ( 1 1 1)

1 1 1
1 1 2

3( 1 1)2
4 ( 1 1 1)

(72)

= +
+ +

+

+

+
±

+ +
+

±

+ +

+
+ +

+
+ +

r x t b c k e

k e k

e( , ) 3( )
4( )

,
a

b c

a
b c

i x t2 2

2 2 2

1

4 ( )
3( ) 1 2

( )

b c
a

b c
a

2 2

3( 2 2)2
4 ( 2 2 2)

2 2 2
2 2 2

3( 2 2)2
4 ( 2 2 2)

(73)

If we set = +
+ +k b c

a1
3( )

4 ( )
2 2 2

2 2 2
and = ±k 12 we obtain

= +
+ +

± +
+ +

+ +q x t b c b c
a

x e( , ) 3( )
8( )

1 tanh 3( )
16 ( )

( vt) ,i x t1 1

1 1 1

1 1
2

1 1 1

( )

(74)

= +
+ +

± +
+ +

+ +r x t b c b c
a

x e( , ) 3( )
8( )

1 tanh 3( )
16 ( )

( vt) ,i x t2 2

2 2 2

2 2
2

2 2 2

( )

(75)

or

= +
+ +

± +
+ +

+ +q x t b c b c
a

x e( , ) 3( )
8( )

1 coth 3( )
16 ( )

( vt) ,i x t1 1

1 1 1

1 1
2

1 1 1

( )

(76)
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= +
+ +

± +
+ +

+ +r x t b c b c
a

x e( , ) 3( )
8( )

1 coth 3( )
16 ( )

( vt) ,i x t2 2

2 2 2

2 2
2

2 2 2

( )

(77)

where is given by Eq. (67).
These solution represent dark and singular soliton solution where

+ + <a ( ) 0.l1 1

3.3. Polynomial law

The dimensionless form of the coupled NLSE in fiber Bragg gratings, having polynomial law of nonlinearity, is given by [9]

+ + + + + +
+ + + + + + =
iq ar b q c r q q q r r q

l q m q r n q r p r q i q r
( | | | | ) ( | | | | | | | | )

( | | | | | | | | | | | | ) 0,
t

x

xx 1
2

1
2

1
4

1
2 2

1
4

1
6

1
4 2

1
2 4

1
6

1 (78)

+ + + + + +
+ + + + + + =
ir aq b r c q r r r q q r

l r m r q n r q p q r i r q
( | | | | ) ( | | | | | | | | )

( | | | | | | | | | | | | ) 0,
t

x

xx 2
2

2
2

2
4

2
2 2

2
4

2
6

2
4 2

2
2 4

2
6

2 (79)

To integrate (78) and (79), the considered hypothesis is

=q x t P e( , ) ( ) ,i x t
1

( , ) (80)

=r x t P e( , ) ( ) ,i x t
2

( , ) (81)

where

= x v t, (82)

and v stands for the soliton velocity. From the phase

= + +x t x t( , ) , (83)

where , and give the soliton frequency, its wave number and phase center, respectively. Put (80) and (81) into (78) and (79). The
real part causes

+ + + + + + + + + + + =P a k P b P c P P P P P P P l P m P P n P P p P P a P( ) 0,j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j
2 ˜ 3

˜
2 5 3

˜
2

˜
4 7 5

˜
2 3

˜
4

˜
6

˜ (84)

while the imaginary part gives

+ =v P a P( ) 2 0,j j j j̃ (85)

where =j 1, 2 and =j j˜ 3 . According to the balancing principle, one has

=P P ,j j˜ (86)

and so (78) and (79) transform into

+ + + + + + + + + + + =a P b c P P l m n p P a P( ) ( ) ( ) ( ) 0,j j j j j j j j j j j j j j j j j j
2 3 5 7

(87)

and

+ =v a P( 2 ) 0,j j j (88)

respectively. From imaginary portion,

=v a2 ,j j (89)

and this implies a relation as

=a a2( ) ( ) 0,1 2 1 2 (90)

By virtue of (90), one can observe
= =a a ,j j (91)

and then

=v a2 . (92)

In this case, the governing model given by (78) and (79) modifies to

+ + + + + +
+ + + + + + =
iq ar b q c r q q q r r q

l q m q r n q r p r q i q r
( | | | | ) ( | | | | | | | | )

( | | | | | | | | | | | | ) 0,
t

x

xx 1
2

1
2

1
4

1
2 2

1
4

1
6

1
4 2

1
2 4

1
6

1 (93)
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+ + + + + +
+ + + + + + =
ir aq b r c q r r r q q r

l r m r q n r q p q r i r q
( | | | | ) ( | | | | | | | | )

( | | | | | | | | | | | | ) 0.
t

x

xx 2
2

2
2

2
4

2
2 2

2
4

2
6

2
4 2

2
2 4

2
6

2 (94)

In addition, real parts transform to

+ + + + + + + + + + + =a P b c P P l m n p P aP( ) ( ) ( ) ( ) 0.j j j j j j j j j j j j j j j
2 3 5 7

(95)

Next, balancing the terms Pj and Pj
7 in Eq. (95) brings about =N 1

3 . Set

=P U ,j j

1
3 (96)

So that Eq. (95) transforms to

+ + + + + + + + + + + =a U b c U U l m n p U a U aU U9( ) 9( ) 9( ) 9( ) 2 ( ) 3 0.j j j j j j j j j j j j j j j j j
2 2

5
3

10
3 4 2

(97)

It needs to be taken the following equalities for integrability target:

+ =b c 0,j j (98)

+ + = 0,j j j (99)

So, Eq.(97) is re-casted as

+ + + + + + =ak U l m n p U a UU U9( ) 9( ) (3 2( ) ) 0,j j j j j j j
2 2 4 2 (100)

for this solution of Eq. (100), assume

=
=

U A A( ) ( )
( )

, 0,
i

N

i

i

N
0 (101)

where ai are all constants to be determined, Balancing UU with U4 in Eq. (100) given =N 1. Consequently, we reach at

= +U A A( ) ( )
( )

.0 1
(102)

Substituting Eq. (102) in Eq. (100) and then setting the coefficients of = …j( 0, 1, 2, )j to zero, then we obtain a set of algebraic
equation involving a a, , ,0 1 as following

4 Coeff.:

+ + + + =A a A l m n p( ) (4 9 ( )) 0,j j j j1
2 4

1
2

(103)
3 Coeff.:

+ + + + =A A a A l m n p aA( ) (6 ( 6 ( )) 5 ) 0,j j j j1
2

0 1
2

1 (104)
2 Coeff.:

+ + + + + + + =A A a A l m n p a a aA( (9( ) ( 6 ( ) ) 2 ( ) 3 ) 9 ) 0,j j j j j1 1
2 2

0
2 2

0 (105)
1 Coeff.:

+ + + + + + + =A A a A l m n p a3 (6 ( 2 ( ) ) ) 0,j j j j j0 1
2

0
2

(106)
0 Coeff.:

+ + + + + + =A a A l m n p9 ( ( ) ) 0.j j j j j0
2 2

0
2

(107)

Solving this system, we obtain

= =
+ + +

A A a
l m n p

0, 4
9( )

,
j j j j

0 1
(108)

and

= 0, (109)

=
+a

a
3( )

.j
2

(110)

Eqs. (109) and (110) lead to a trivial solution. Thus, modified simple equation fails to secure dark or singular solitons to FBGs
maintaining polynomial law nonlinearity!
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3.4. Quadratic-cubic law

The dimensionless form of the coupled NLSE in fiber Bragg gratings, with quadratic-cubic (QC) nonlinearity, is given by [10]

+ + + + + + + + + + =iq ar b q q r qr q r c q d r q p r q i q r| | | | * * ( | | | | ) * 0,t xxx 1
2 2

1
2

1
2

1
2

1 (111)

+ + + + + + + + + + =ir aq b q r q qr qr c r d q r p q r i r q| | | | * * ( | | | | ) * 0,t xxx 2
2 2

2
2

2
2

2
2

2 (112)

To investigate soliton solutions to Eqs. (111) and (112), the starting hypothesis is

=q x t P e( , ) ( ) ,i x t
1

( , ) (113)

and

=r x t P e( , ) ( ) ,i x t
2

( , ) (114)

where Pj for =j 1, 2 are the amplitudes of the waves,

= x v t, (115)

where v is the velocity of the solitary wave. The phase of the waves is given by

= + +x t x t( , ) , (116)

where , and are respectively the frequency, wave number and phase constant. Next, insert (113) and (114) into (111) and (112).
The real part is

+ + + + + + =P a k P b P b P P P P P a P( ) ( ) ( ) 0,l l l l l l l l l l l l l l l l l l
2 ˜ 2 ˜ 3

˜
2

˜ (117)

while the imaginary part gives

+ =v P a P( ) 2 0,l l l l̃ (118)

where =l 1, 2 and =l l˜ 3 . According to the balancing principle, one has

=P P ,l l˜ (119)

and thus (111) and (112) turn into, respectively

+ + + + + + =a P b P P a P( ) 2 ( ) 0,l l l l l l l l l l l l
2 2 3 (120)

and

+ =v a P( 2 ) 0.l l l (121)

From imaginary portion,

=v a2 ,l l (122)

and from here the speed v of the solitons implies

=a a2( ) ( ) 0.1 2 1 2 (123)

Also, from the coefficients of independent parameters , it is easy to observe that
= =a a, .l l (124)

In view of this observation, the speed of the solitons is

=v a2 . (125)

Thus, the model (111) and (112) alternate to

+ + + + + + + + + + =iq ar b q q r qr q r c q d r q p r q i q r| | | | * * ( | | | | ) * 0,t xxx 1
2 2

1
2

1
2

1
2

1 (126)

+ + + + + + + + + + =ir aq b q r q qr qr c r d q r p q r i r q| | | | * * ( | | | | ) * 0.t xxx 2
2 2

2
2

2
2

2
2

2 (127)

In addition, real parts transform to

+ + + + + + =a P b P P a P( ) 2 ( ) 0,l l l l l l l l l l l l
2 2 3 (128)

for this solution of Eq. (128), assume

=
=

P A A( ) ( )
( )

, 0,
i

N

i

i

N
0 (129)

where ai are all constants to be determined, Balancing U with U3 in Eq. (130) given =N 1. Consequently, we reach
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= +P A A( ) ( )
( )

.0 1
(130)

Substituting Eq. (130) in Eq. (128) and then setting the coefficients of = …j( 0, 1, 2, )j to zero, then we obtain a set of algebraic
equation involving a a, , ,0 1 as following

3 Coeff.:

+ + + =A a A c d p( ) (2 ( )) 0,l l l1
3

1
2 (131)

2 Coeff.:

+ + + =A A A c d p b a( (3 ( ) 2 ) 3 ) 0,l l l l1 1 0 (132)
1 Coeff.:

+ + + + + + + =A a A b A c d p a( ( 4 3 ( ) ) ) 0,l l l l j1
2

0 0
2

(133)
0 Coeff.:

+ + + + + + =A a A b A c d p( 2 ( ) ) 0.l l l l j0
2

0 0
2

(134)

Solving this system, we obtain

= = ±
+ +

A A a
c d p

0, 2 ,
l l l

0 1
(135)

and

=
+ +

b
a c d p

8
9 ( )

,l

l l l

2

(136)

=
+a( )

.j
(137)

From Eqs. (136) and (137), we can deduce

=
+ +

+ + +
b

a c d p
k e8

9 ( )
l

l l l

c d p a

ab
2

1

9( )( ( ) )

8
l l l j

2

1
2

(138)

=
+ + +

+
+ + +

b
a c d p a

k e k8
9 ( )( ( ) )

l

l l l j

c d p a

ab
2

2 1

9( )( ( ) )

8 2

l l l j
2

1
2

(139)

where k1 and k2 are constants of integration. Substituting Eqs. (138) and (139) into Eq. (130), we obtain following the following exact
solution to Eqs. (126) and (127).

=

+

+ +

+ + +

+ +

+ + +

+ + +
q x t

k e

k e k

e( , ) ,
b

c d p

b
c d p a

i x t

4
1

8
9( )( ( ) ) 1 2

( )

c d p a
ab

j

c d p a
ab

1
1 1 1

9( 1 1 1)( ( ) 1)2

8 12

12

1 1 1

9( 1 1 1)( ( ) 1)2

8 12

(140)

=

+

+ +

+ + +

+ +

+ + +

+ + +
r x t

k e

k e k

e( , ) .
b

c d p

b
c d p a

i x t

4
1

8
9( )( ( ) ) 1 2

( )

c d p a
ab

c d p a
ab

2
2 2 2

9( 2 2 2)( ( ) 2)2

8 22

22

2 2 2 2

9( 2 2 2)( ( ) 2)2

8 22
(141)

If we set =
+ + +

k
c d p a

ab1
9( )( ( ) )

8
l l l j

22 and = ±k 12 , we obtain

=
+

±
+ + + + + +q x t

a
b

c d p a
ab

x t e( , )
9( ( ) )

4
1 tanh

9( )( ( ) )
8

( ) ,
l

i x t1 1 1 1 1

1
2

( )

(142)

=
+

±
+ + + + + +r x t

a
b

c d p a
ab

x t e( , )
9( ( ) )

4
1 tanh

9( )( ( ) )
8

( ) ,i x t2

2

2 2 2 2

2
2

( )

(143)

or
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=
+

±
+ + + + + +q x t

a
b

c d p a
ab

x t e( , )
9( ( ) )

4
{1 coth[

9( )( ( ) )
8

( )]} ,
l

i x t1 1 1 1 1

1
2

( )

(144)

=
+

±
+ + + + + +r x t

a
b

c d p a
ab

x t e( , )
9( ( ) )

4
{1 coth[

9( )( ( ) )
8

( )]} ,i x t2

2

2 2 2 2

2
2

( )

(145)

where is arbitrary constant.
These solution represent dark and singular soliton solutions and remain valid whenever

+ + + + <a c d p a( )( ( ) ) 0.l l l 2

3.5. Parabolic-nonlocal combo law

The dimensionless form of the coupled NLSE in FBG, having parabolic-nonlocal combo nonlinearity, is given by [11]

+ + + + + + + + =iq a r b q c r q q q r r q i q r( | | | | ) ( | | | | | | | | ) 0,t x1 xx 1
2

1
2

xx 1
4

1
2 2

1
4

1 1 (146)

+ + + + + + + + =ir a q b r c q r r r q q r i r q( | | | | ) ( | | | | | | | | ) 0.t x2 xx 2
2

2
2

xx 2
4

2
2 2

2
4

2 2 (147)

In Eqs. (146) and (147), q x t( , ) and x t( , ) represent forward and backward propagating waves respectively while aj for =j 1, 2 are
coefficients of dispersive reflectivity. Next, bj are the coefficients of self-phase modulation (SPM); cj represents the cross-phase
modulation (XPM) for non-local nonlinearity. Next, j represents inter-modal dispersion and finally j are detuning parameters. All of
the coefficients are real valued constants and =i 1 .

In order to integrate (146) and (147), the assumption is:

=q x t P e( , ) ( ) ,i x t
1

( , ) (148)

=r x t P e( , ) ( ) ,i x t
2

( , ) (149)

where

= x v t, (150)

and v stands for the soliton velocity. From the phase

= + +x t x t( , ) , (151)

where , and give the soliton frequency, its wave number and phase center, respectively. The real and imaginary parts yield
respectively

+ + + + + + + + + =( )P a P P P P P P b P P c P P b P P a P c P P P( ) ( ) 2 ( ) 2 2 2 0,j j j j j j j j j j j j j j j j j j j j j j j j j j j j
2 ˜ 5 3

˜
2

˜
4 2

˜
2 2

˜ ˜ ˜ (152)

and

+ =P a P( ) 2 0,j j j j̃ (153)

where =j 1, 2 and =j j˜ 3 , after inserting (148) and (149) into (146) and (147). Next, the balancing principle causes

=P P ,j j˜ (154)

and thus (152) and (153) are reshaped as

+ + + + + + + + +a P P b c P P a P b c P P( ) ( ) 2( ) ( ) 2( ) ,j j j j j j j j j j j j j j j j j j
2 5 2 2

(155)

and

+ =a P( 2 ) 0,j j j (156)

respectively. From (156) one observes the speed of soliton as

= a2 ,j j (157)

and this speed brings about

=a a2( ) ( ) 0.l 2 1 2 (158)

With the help of (158)
= =a a, ,j j (159)

and then

=v a2 . (160)

In view of these results, (146) and (147) are re-casted as
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+ + + + + + + + =iq a r b q c r q q q r r q i q r( | | | | ) ( | | | | | | | | ) 0,t x1 xx 1
2

1
2

xx 1
4

1
2 2

1
4

1 1 (161)

+ + + + + + + + =ir a q b r c q r r r q q r i r q( | | | | ) ( | | | | | | | | ) 0.t x2 xx 2
2

2
2

xx 2
4

2
2 2

2
4

2 2 (162)

Therefore, real parts imply

+ + + + + + + + +a P P b c P P a P b c P P( ) ( ) 2( ) ( ) 2( ) .j j j j j j j j j j j j j j j j j j
2 5 2 2

(163)

For this solution of Eq. (163), assume

=
=

P A A( ) ( )
( )

, 0,
i

N

i

i

N
0 (164)

where ai are all constants to be determined, Balancing P P2 with P5 in Eq.(164) given =N 1. Consequently, we reach at

= +P A A( ) ( )
( )

.0 1
(165)

Substituting Eq. (165) in Eq. (163) and then setting the coefficients of = …j( 0, 1, 2, )j to zero, then we obtain a set of algebraic
equation involving a a, , ,0 1 as following

5 Coeff.:

+ + + + =A A b c( ) ( ( ) 6 6 ) 0,j j j j j1
3 5

1
2

(166)
4 Coeff.:

+ + + + + =A A A b c A b c5 ( ) ( ( ( ) 2 2 ) 2 ( )) 0,j j j j j j j1
2 3

0 1
2

1 (167)
3 Coeff.:

+ + + + + + + + + =A a A A b c A b c A A A b c2 (( ) ( (5 ( ) 2 2 )) ( ) ( ) ( 8 )( )) 0,j j j j j j j j j1
2

0
2

1
2

1
2 2

1 1 0 (168)
2 Coeff.:

+ + + + + + + =A a A b c A A b c A A( 3 6 ( ) 2 ( )(( ) 2 ) 10 ( ) ( )) 0,j j j j j j j1 0
2

1 0
2

1 0
3 2 (169)

1 Coeff.:

+ + + + + + + + =A a A b c a A( ( 2 ( )) ( 5 ( ) )) 0,j j j j j j1
(3)

0
2 2

0
4

(170)
0 Coeff.:

+ + + + + =A a A( ( ) ) 0,j j j j0
2

0
4

(171)

Solving this system, we obtain

=
+

=
+

+ +
A a

b c
A

b c
4( )

,
6( )

,
j j

j j

j j j
0 1

(172)

=
+ + + + +

+
a b c a

b c
( ) 16( ) ( ( ) )

16( )
,j j j j j j

j j

2 2

2 (173)

and

= ±
+ +

+
a

b c
( )
6( )

,j j j

j j
2 (174)

=
+ +

+
a

b c
( )
6( )

.j j j

j j
2 (175)

From Eqs. (174) and (175), we can deduce

=
+

+ +

+ +

+b c
a

k e
6( )
( )

,j j

j j j

a

b c
2

1

( )

6( )
j j j

j j 2

(176)

=
+

+ +
+

+ +

+b c
a

k e k
6( )
( )

,j j

j j j

a

b c
2

1

( )

6( )
2

j j j

j j 2

(177)

where k1 and k2 are constants of integration. Substituting Eqs. (176) and (177) into Eq. (165), we obtain following the following exact
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solution to Eqs. (146) and (147).

=
+

+
+ +

±

+

+
+ +

+
+ +

+ +

+ +
+

+ +
+

q x t a
b c

b c k e

k e k

e( , )
4( )

6( )
,

j j

j j

j j j

b c
a

b c
a

i x t

6( )
( ) 1

6( )
( ) 1 2

( )

a
b c

a
b c

1 1 2

1 1 1

( 1 1 1)
6( 1 1)2

1 1 2

1 1 1

( 1 1 1)
6( 1 1)2

(178)

=
+

+
+ +

±

+

+
+ +

+
+ +

+ +

+ +
+

+ +
+

r x t a
b c

b c k e

k e k

e( , )
4( )

6( )
.

j j

j j

j j j

b c
a

b c
a

i x t

6( )
( ) 1

6( )
( ) 1 2

( )

a
b c

a
b c

2 2 2

2 2 2

( 2 2 2)
6( 2 2)2

2 2 2

2 2 2

( 2 2 2)
6( 2 2)2

(179)

If we set =
+ +

+
k

a

b c1
( )

6( )
j j j

j j 2 and = ±k 12 , we obtain

= ±
+

+ +
+

+ +q x t a
b c

a
b c

x t e( , )
4( )

tanh
( )
6( )

( ) ,i x t

1 1

1 1 1

1 1

( )

(180)

= ±
+

+ +
+

+ +r x t a
b c

a
b c

x t e( , )
4( )

tanh
( )
6( )

( ) ,i x t

2 2

2 2 2

2 2

( )

(181)

or

= ±
+

+ +
+

+ +q x t a
b c

a
b c

x t e( , )
4( )

coth
( )
6( )

( ) ,i x t

1 1

1 1 1

1 1

( )

(182)

= ±
+

+ +
+

+ +r x t a
b c

a
b c

x t e( , )
4( )

coth
( )
6( )

( ) ,i x t

2 2

2 2 2

2 2

( )

(183)

where is given by Eq. (173).
These solutions represent dark and singular solitons respectively, whenever

+ + + >a b c( )( ) 0.j j j j j

4. Conclusions

Optical solitons in FBGs is studied in details by the aid of modified simple equation. This led to the retrieval of dark and singular
soliton solutions to the models that are considered with five different nonlinearity structures. This algorithm failed to secure soliton
solutions for polynomial law nonlinearity. Another limitation to this scheme is that it is unable to recover bright solitons to the
models. Thus, a complete spectrum of soliton solutions was not obtained using today's algorithm. Therefore, one is encouraged to
address these models with additional schemes. This gives way to open ended problems. Later, Lie symmetry analysis, Painleve
analysis, Kudryashov's scheme and others will yield other solutions, hopefully. Such research activities are under way. Their results
will be revealed with time.
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